Name: Enrolment No:		
Course: Engineering Mathematics Semester: I Course Code: MATH 1036 Time: $\mathbf{0 3}$ hrs. Programme: B.Tech. (All SoCS Batches) Max. Marks: $\mathbf{1 0 0}$		
1. Each Question will carry 5 Marks 2. Instruction: Select the correct option(s)		
Q 1	Given the system of linear equations $x-4 y+5 z=-1,2 x-y+3 z=1$, $3 x+2 y+z=3$ has: A. Unique solution B. No Solution C. Infinitely many solutions D. None of these	CO1
Q 2	If $y_{n}(x)=p^{n}\left[1+(-1)^{n} \sin 2 p x\right]^{1 / 2}$, then the value of $y_{8}(0)$ when $p=$ $1 / 4$ is: A. $\left(\frac{1}{4}\right)^{1 / 8}$ B. $\left(\frac{1}{4}\right)^{1 / 4}$ C. $\left(\frac{1}{4}\right)^{8}$ D. $\left(\frac{1}{4}\right)^{4}$	CO2
Q 3	Find the particular integral of $\left(D^{2}+5 D+6\right) y=e^{x}$: A. $\frac{e^{x}}{12}$ B. $\frac{e^{x}}{6}$ C. $\frac{e^{x}}{24}$ D. $\frac{e^{x}}{30}$	CO3
Q 4	A number x is chosen at random from the numbers $-2,-1,0,1,2$. Then the probability that $\mathrm{x}^{2}<2$ is? A. $1 / 5$ B. $2 / 5$ C. $3 / 5$ D. $4 / 5$	CO4
Q 5	Using Newton-Raphson method, find the real root of $x \sin x+\cos x=0$ which is near $x=\pi$ correct to three decimal places: A. 2.798 B. 1.798 C. 3.823 D. 3.141	CO5
Q 6	The value of $\int_{0}^{1} \frac{d x}{1+x}$ by Simpson's $1 / 3$ rule is: A. 0.96315 B. 0.63915 C. 0.69315 D. 0.69915	CO5
SECTION - B $10 \times 5=50 \text { Marks }$ 1. Each question will carry 10 marks 2. Instruction: Answer on a separate white sheet, upload the solution as image.		
Q 1	Find the characteristic equation of the matrix $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right]$ and hence compute A^{-1}.	CO1
Q 2	Change the order of integration and hence evaluate $\int_{0}^{a} \int_{\sqrt{a x}}^{a} \frac{y^{2} d x d y}{\sqrt{y^{4}-a^{2} x^{2}}}$.	CO 2

Q 3	A slider in a machine moves along a fixed straight rod. Its distance x (in cm) along the rod is given at various times t (in sec.). Evaluate $\frac{d x}{d t}$ at $t=0.1$.	CO 5
Q	Assume that the probability of an individual coalminer being killed in a mine accident during a year is $1 / 2400$. Use Poisson's distribution to calculate the probability that in a mine employing 200 miners there will be at least one fatal accident in a year.	CO 4
Q	Solve, by the method of variation of parameters, $\frac{d^{2} y}{d x^{2}}-y=\frac{2}{1+e^{x}}$. OR Solve $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=0$ given that $y=x$ is a solution.	CO3
1. Each Question carries 20 Marks. 2. Instruction: Answer on a separate white sheet, upload the solution as image.		
Q 1	Solve the system of linear equations $20 x+y-2 z=17 ; \quad 3 x+20 y-z=-18 ; \quad 2 x-3 y+20 z=25$. Using a) Jacobi's iteration method, b) Gauss - Seidel iteration method. OR Use Runge - Kutta method of fourth order to find the numerical solution at $x=1.4$ for $\frac{d y}{d x}=x^{2}+y^{2}, y(1)=0$. Assume step size $h=0.2$.	CO5

