Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Examinations (Online Mode), Jan-Feb 2021

Course: Remedial Mathematics Semester: I

Program: B.Pharma **Time:** 90 min

Course Code: BP106RMT Max. Marks: 35

SECTION - A

 $1 \times 10 = 10$ Marks

- 1. Answer any ONE question from Q1 and Q2.
- 2. Instruction: Answer on a separate white sheet, upload the solution as image.

Q 1	If $A = \begin{bmatrix} 2 & 1 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix}$, verify that $A (adj A) = (adj A) A = A I_3$	CO1
Q 2	Resolve $\frac{2x-1}{(x-1)(x+2)(x-3)}$ into partial fractions.	CO1

SECTION – B

 $5 \times 5 = 25 \text{ Marks}$

- 1. Answer any FIVE questions from Q3-Q9. Each question will carry 5 marks
- 2. Instruction: Answer on a separate white sheet, upload the solution as image.

Q 3	Find k so that $\lim_{x\to 2} f(x)$ exists, where $f(x) = \begin{cases} 2x+3 & \text{if } x \le 2\\ x+k & \text{if } x > 2 \end{cases}$	CO3
Q 4	Using Integration by parts, prove that $\int (1-x^2)\sin 2x dx = \frac{2x^2-3}{4}\cos 2x - \frac{x}{2}\sin 2x + C$	CO2
Q 5	Show that $3 \log 4 - 2 \log 6 + \log(18)^{\frac{3}{2}} = \log(96\sqrt{2}).$	CO1
Q 6	Consider the system of equations $2x - y + 6z = 10$; $-3x + 4y - 5z = 11$; $8x - 7y - 9z = 12$. Find the values of x , y and z using Cramer's rule.	CO1

Q 7	What is the perimeter of the parallelogram given below:	CO3
Q 8	Prove that the equation $3x(xy-2)dx + (x^3+2y)dy = 0$ is exact and hence find its solution.	CO4
Q 9	After the intravenous injection of a drug to a patient, it distributes and also eliminates in the body as a first order kinetics set into the differential equation $\frac{dX}{dt} = -kX$ where X is the total amount of drug in the body of a patient at time t . Using Laplace transformation, prove that the solution of the differential equation is $X = X_0 e^{-kt}$.	CO5