UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, JAN 2021			
Course: RESEARCH METHODOLOGY AND BIOSTATISTIC () Program: M.Sc. (SOHS) Number of pages: 2		Semester: I Time: 03 hrs. Max. Marks: 100	
$\begin{aligned} & \text { SECTION A } \\ & (6 \times 5=30) \end{aligned}$			
S. No.		Marks	CO
Q1	Approaches to Quantitative Research are: (Choose appropriate options) a) Inferential. b) Group Interviews. c) Experimental. d) Depth interviews. e) Simulation. f) All of the above.	5	CO1
Q2	Match the following: $\begin{array}{ll}\text { a) Descriptive research } & \text { 1. Deals with ideas leading to more ideas. } \\ \text { b) Applied research } & \text { 2. Deals with checking out quantities. } \\ \text { c) Fundamental research } & \text { 3. Finds solution, mostly, to immediate problems. } \\ \text { d) Conceptual research } & \text { 4. Leads to foundations for larger understanding. } \\ \text { e) Experimental research } & \text { 5. Does not deal with how/when }\end{array}$	5	CO3
Q3	If there is a very strong correlation between two variables then the correlation coefficient must be a)any value larger than 1 b) much smaller than 0 but greater than or equal to -1 , if the correlation is negative c) much larger than 0 , regardless of whether the correlation is negative or positive d) None of these alternatives is correct.	5	CO4
Q4	Assuming a normal distribution with mean μ and standard deviation σ, express the interval to contain approx. 65% of observations in terms of μ and σ. a) $\mu \pm \sigma$ b) $\mu \pm 2 \sigma$ c) $\mu \pm 3 \sigma$ d) None of the above	5	CO2
Q5	A First-aid box contains three types of tablets, Digine (X in numbers), Paracetamole (Y in numbers) and Crocine (Z in numbers) A tablet is drawn at the random, then what is the probability of drawing a Paracetamole. a) $Y /(X-Y+Z)$ b) $Y /(X+Y-Z)$ c) $Y /(X+Y+Z)$ d) None of the above	5	CO1

Q6	In a moderately symmetrical series, the arithmetic mean, median and mode are related as: (a) Mean - Mode $=3($ Mean - Median) (b) Mean - Median $=2($ Median - Mode) (c) Median - Mode $=($ Mean - Median $) / 2$ (d) Mode - Median $=2$ Mean -2 Median	5	CO5
SECTION B$(5 \times 10=50)$			
Q1	What according to you are important components of a Research Report? Support your choices.	$\begin{gathered} 10 \\ (6+4) \end{gathered}$	CO1
Q2	What is sampling? Explain (with example) Type-I and Type-II error associated with it?	$\begin{gathered} 10 \\ (3+7) \end{gathered}$	CO3
Q3	What is the difference between Parametric and Non-parametric tests for comparing two or more groups? Explain Null Hypothesis with example?	$\begin{gathered} 10 \\ (6+4) \end{gathered}$	CO4
Q4	The following distribution gives the daily income of 50 workers of a pharma factory. Convert the distribution above to a less than type cumulative frequency distribution, and draw its ogive. Or (a)What is the difference between discrete and continuous probability distribution? Give example of each type of distribution? (b) From a bag of red and blue balls, the probability of picking a red ball is $X / 2$. Find " X " if the probability of picking a blue ball is $2 / 3$	10	CO2
Q5	Write the short notes on the following a) Scatter Plot b) Use of Bar Chart	10	CO4
SECTION-C$(1 \times 20=20)$			
Q11	a)What is the use of normal distribution in research analysis? Explain with example? b)Typical Tensile Strength of bars used in pharma manufacturing unit are normally distributed with mean is 70 and standard deviation 10.(i)What is the probability of bars has less than 50 tensile strength? ii) What is the probability of bar having between 60 and 80 units of tensile strength?	$\begin{gathered} 20 \\ (10+10) \end{gathered}$	CO4

					Table entry for z is the area under the standard normal curve to the let of z.					
z	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
0.0	. 5000	. 5040	. 5080	. 5120	. 5160	. 5199	. 5239	. 5279	. 5319	. 5359
0.1	. 5398	. 5438	. 5478	. 5517	5557	. 5596	. 5636	5675	. 5714	5753
0.2	. 5793	. 5832	. 5871	. 5910	. 5948	. 5987	. 6026	. 6064	. 6103	. 6141
0.3	. 6179	. 6217	. 6255	. 6293	. 6331	. 6368	. 6406	. 6443	. 6480	. 6517
0.4	. 6554	. 6591	. 6628	. 6664	. 6700	. 6736	. 6772	. 6808	. 6844	. 6879
0.5	. 6915	. 6950	. 6985	. 7019	7054	. 7088	. 7123	. 7157	. 7190	7224
0.6	. 7257	. 7291	. 7324	. 7357	.7389	. 7422	. 7454	. 7486	. 7517	. 7549
0.7	. 7580	. 7611	. 7642	. 7673	7704	. 7734	. 7764	. 7794	. 7823	. 7852
0.8	. 7881	. 7910	. 7939	. 7967	7995	. 8023	. 8051	. 8078	. 8106	. 8133
0.9	. 8159	. 8186	. 8212	. 8238	. 8264	. 8289	. 8315	. 8340	. 8365	.8369
1.0	. 8413	. 8438	. 8461	,8485	. 8508	. 8531	. 8554	. 8577	. 8599	. 8621
1.1	. 8643	. 8665	. 8686	. 8708	. 8729	. 8749	. 8770	8790	.8810	. 8830
1.2	. 8849	. 8869	. 8688	. 8907	. 8925	. 8944	. 8962	. 8980	. 8997	. 9015
1.3	. 9032	. 9049	. 9066	. 9082	. 9099	. 9115	. 9131	. 9147	. 9162	. 9177
1.4	. 9192	. 9207	. 9222	. 9236	. 9251	. 9265	. 9279	. 9292	. 9306	. 9319
1.5	. 9332	. 9345	. 9357	. 9370	. 9382	. 9394	. 9406	. 9418	. 9429	. 9441
1.6	. 9452	. 9463	. 9474	. 9484	. 9495	. 9505	. 9515	. 9525	. 9535	. 9545
1.7	. 9554	. 9564	. 9573	. 9582	. 9591	. 9599	. 9608	. 9616	. 9625	. 9633
1.8	. 9641	. 9649	. 9656	. 9664	. 9671	. 9678	. 9685	. 9693	. 9699	. 9706
1.9	9713	. 9719	. 9726	. 9732	9738	. 9744	. 9750	. 9756	. 9761	. 9767
2.0	. 9772	. 9778	. 9783	. 9788	. 9793	. 9798	. 9803	. 9808	. 9812	. 9817
2.1	. 9821	. 9826	. 9830	. 9834	9838	. 9842	,9846	9850	. 9854	. 9857
2.2	. 9861	. 9864	. 9868	. 9871	. 9875	. 9878	. 9881	. 9884	. 9887	. 9890
2.3	. 9893	. 9896	. 9898	. 9901	9904	. 9906	. 9909	. 9911	. 9913	9916
2.4	. 9918	. 9920	. 9922	. 9925	. 9927	. 9929	. 9931	. 9932	. 9934	. 9936
2.5	. 9938	. 9940	. 9941	. 9943	. 9945	. 9946	. 9948	. 9949	. 9951	. 9952
2.6	. 9953	. 9955	. 9956	. 9957	. 9959	. 9960	. 9961	. 9962	. 9963	. 9964
2.7	. 9965	. 9966	. 9967	. 9968	. 9969	. 9970	. 9971	. 9972	. 9973	. 9974
2.8	. 9974	. 9975	. 9976	. 9977	. 9977	. 9978	.9979	. 9979	. 9980	. 9981
2.9	. 9981	. 9982	. 9982	. 9983	9984	. 9984	. 9985	. 9985	. 9986	. 9986
3.0	. 9987	. 9987	. 9987	. 9988	. 9988	. 9989	. 9989	. 9989	. 9990	. 9990
3.1	. 9990	. 9991	. 9991	. 9991	. 9992	. 9992	. 9992	. 9992	. 9993	. 9993
3.2	. 9993	. 9993	. 9994	. 9994	. 9994	. 9994	. 9994	. 9995	. 9995	. 9995
3.3	. 9995	. 9995	. 9995	. 9996	. 9996	. 9996	. 9996	. 9996	. 9996	. 9997
3.4	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9998

Standard Normal Cumulative Probability Table

Cumulative probabilities for NEGATIVE z-values are shown in the following table:

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0008	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0018	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0028	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0018
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0058	0.0057	0.0055	0.0054	0.0052	0.0051	0.0048	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0088	0.0068	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0088	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0128	0.0125	0.0122	0.0118	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0168	0.0162	0.0158	0.0154	0.0150	0.0148	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0182	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0288	0.0282	0.0256	0.0250	0.0244	0.0238	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0382	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0485	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0558
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0894	0.0881
-1.3	0.0968	0.0951	0.0934	0.0918	0.0801	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0885
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1538	0.1515	0.1482	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1680	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1948	0.1922	0.1894	0.1887
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2268	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2876	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3182	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3689	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3858
-0.1	0.4802	0.4582	0.4522	0.4483	0.4443	0.4404	0.4384	0.4325	0.4288	0.4247
0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4841

