

	transition from the first excited state to the ground state. The energy (in eV) of the first excited state will be \qquad		
SECTION B			
Q7.	Obtain the continuity equation for a charge placed in the interior of a dielectric. Also obtain the expression for relaxation time and give its significance	10	$\mathrm{CO2}$
Q8.	Discuss the principles of Quantum Computing; Describe the prospects and challenges of quantum computing.	10	CO5
Q9.	State Faraday's law of electromagnetic induction. Obtain the differential form of it. A conducting circular loop of radius 20 cm lies in the $z=0$ plane in a magnetic field $\mathbf{B}=$ $10 \cos 377 t \mathbf{a}_{z} \mathrm{mWb} / \mathrm{m}^{2}$. Calculate the induced voltage in the loop.	10	CO 3
Q10.	(a) Show that the minimum energy of incident radiation should be $\sim 256 \mathrm{KeV}$ in order to transfer half of its energy to recoiled electron. (b) Show that de-Broglie wave length of electrons accelerated through a potential of V volts is given by $\lambda=\left(\sqrt{\frac{150}{V}}\right) \AA$	10	CO4
Q11.	Write the Differential form of Maxwell's equation for time varying fields. Point out the term, which expresses the displacement current density. Write few lines about the displacement current.	10	CO 3
SECTION-C			
Q12.	An X ray photon is scattered by a target material. Obtain an expression for the shift in wavelength created for the incoming and outgoing photon. If an electron is also scattered in the process, then derive the relation between electron and photon scattering angles. OR Derive the expression for the eigenvalue and eigen function of a particle of rest mass m_{0}, trapped in a one-dimensional box of length L. Also, find the probability of finding a particle trapped in a 1 D box of length L, between $0.25 L$ to $0.5 L$, in its ground state.	20	$\mathrm{CO} 4$ CO4
Physical constants:$\begin{gathered} h=6.63 \times 10^{-34} \mathrm{~J}-s, c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}, k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}, \mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m} \\ \varepsilon_{0}=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}, \text { mass of proton }=1.6726 \times 10^{-27} \mathrm{Kg} \end{gathered}$			

