Name: Enrolment No:			
Course: Business Mathematics Semester: I Program: BBA(FAS/CORE/EPRCC) Time: $\mathbf{3}$ Hours Course code: DSQT 1001 Max. Marks: $\mathbf{1 0 0}$ Instructions: All the questions are compulsory.			
SECTION A			
1.	State True or False. i) Rank of $\left[\begin{array}{ll}0 & 2 \\ 0 & 2\end{array}\right]$ is 2 . ii) Matrix $A=\left[\begin{array}{ll}3 & 2 \\ 6 & 4\end{array}\right]$ is singular matrix. iii) Inverse of Matrix $X=\left[\begin{array}{ll}5 & 1 \\ 8 & 2\end{array}\right]$ do not exist. iv) For a given set $b \in\{\{b\}\}$. v) Set A and B are disjoint sets then $A \cap B=\phi$.	5	CO1
2.	State True or False. i) If $U=\{1,2,3,4,5,6\}$ is universal set and $A=\{1,2,3\}$, then $U-A=A$ ii) If X is a matrix and $\left[\begin{array}{lll} 1 & 4 & 3 \\ 2 & 2 & 3 \end{array}\right] * X *\left[\begin{array}{lll} 1 & 4 & 3 \\ 2 & 2 & 3 \end{array}\right]=\left[\begin{array}{lll} 10 & 4 & 9 \\ 10 & 4 & 9 \end{array}\right]$ Then order of matrix X is 2×3 iii) Following series is an Arithmetic Progression $3+5+7+9+12+\cdots$ iv) If $y=f(u)$ and $u=f(x)$ then $\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d x}{d u}$ v) A square matrix is said to be diagonal matrix if $a_{i j}=0$ for $i=j$.	5	CO1
3.	State True or False. a) Matrix inverse exist only when determinant is zero. b) Sum of following series is 216 $-\frac{1}{4}+\frac{1}{2}-1+2-4+8 \ldots \ldots \ldots \infty$ c) For given sets $\mathrm{A}, \mathrm{B}, \mathrm{C}$ $(A \cup B) \cup C=A \cup(B \cup C)$ d) For two matrix A and B $(A-B)^{\prime}=A^{\prime}-B^{\prime}$ e) Derivative of a^{x} is also a^{x} where a is constant.	5	CO1

4.	Fill in the blanks. (i) Marginal revenue is \qquad of total revenue. (ii) In case of price demand under normal condition of demand, x_{d} \qquad as p increases. (where x_{d} is quantity demanded of commodity p is price of commodity) (iii) Property tax is \qquad Cost. (iv) If demand and supply of a commodity is denoted by Q_{1}^{d} and Q_{1}^{s} then condition of equilibrium is \qquad (v) $\int e^{3 x^{2}} x d x$ can be solved using the \qquad method of integration.	5	CO1
5.	Fill in the blanks. (i) If $f(x)$ is continuous and odd function over [a,-a] then $\int_{-a}^{a} f(x) d x=$ \qquad (ii) The function $y=x^{2}-2 x+3$ has a minima at \qquad (iii) If a function $\mathrm{f}(\mathrm{x})$ has a point of minima at $x=c$ and $f^{\prime \prime}(c)$ \qquad 0. (iv) If $y=[f(x)]^{n}$ where $\mathrm{f}(\mathrm{x})$ is function of x and n is real number then $\frac{d y}{d x}=$ \qquad (vi) If $y=\frac{u}{v}$ where u and v are function of x and $\mathrm{v} \neq 0$ then $\frac{d y}{d x}=$ \qquad	5	$\mathrm{CO1}$
6.	Fill in the blanks: a) $\int_{2}\left(x^{3}\right)=0$ b) If production is zero then \qquad is equal to fixed cost. c) Relationship between \qquad and quantity demanded is called demand function. d) $\frac{\text { Revenue }}{\text { quantity sold }}$ Is also called \qquad function e) If for any function at $x=c$, first derivative is zero and second derivative is negative then at $x=c$ function will have its \qquad value.	5	$\mathrm{CO1}$

SECTION B		(5x10=50 Marks)	
1.	Integrate the following function: $\int_{-4}^{-1} x^{2}(3-4 x) d x$	10	CO 2
2.	Find the value of the Determinant $\left\|\begin{array}{ccc} 3 & 2 & 0 \\ 2 & 1 & 3 \\ -5 & -1 & 4 \end{array}\right\|$	10	CO 2
3.	Find the maximum and minimum value of $f(x)=x^{3}-12 x^{2}+36 x+17$	10	CO2
4	Differentiate the following function with respect to x : $y=\frac{2 x^{2}+3 x+7}{x^{2}+7}$	10	$\mathrm{CO3}$
5	Find the derivative of the following function $\frac{(\log x)^{2}}{x}$	10	$\mathrm{CO3}$
	SECTION C	1x20=20 Marks)	
a) A salesman has the following record of sales during three months for three items which have different rate of commission. b) If, MC is marginal cost and MR is marginal revenue and $M C=20+\frac{x}{30}, \text { and } M R=35$ The fixed cost is 2500 , determine the maximum profit and profit maximising level output.		20	$\mathrm{CO4}$

