Name: Enrolment No:		UNIVERSITY WITH A PURPOSE			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, May 2020 Course: Business Mathematics Semester: I Program: BBA(FAS/CORE/EPRCC) Time: 3 Hours Course code: DSQT 1001 Max. Marks: 100 Instructions: All the questions are compulsory.					
	SECTION A	(6x5=30 Mar	5=30 Marks)		
i) H ii) N iii) I iv) H	rue or False. Rank of $\begin{bmatrix} 0 & 2 \\ 0 & 2 \end{bmatrix}$ is 2. Matrix $A = \begin{bmatrix} 3 & 2 \\ 6 & 4 \end{bmatrix}$ is singular matrix. Inverse of Matrix $X = \begin{bmatrix} 5 & 1 \\ 8 & 2 \end{bmatrix}$ do not exist. For a given set $b \in \{\{b\}\}$. Set A and B are disjoint sets then $A \cap B = \phi$.	5	C01		
2. State Tr i) ii) iii) v) v)	rue or False. If $U = \{1,2,3,4,5,6\}$ is universal set and A If X is a matrix and $\begin{bmatrix} 1 & 4 & 3 \\ 2 & 2 & 3 \end{bmatrix} * X * \begin{bmatrix} 1 & 4 & 3 \\ 2 & 2 & 3 \end{bmatrix}$ Then order of matrix X is 2×3 Following series is an Arithmetic Progress 3 + 5 + 7 + 9 + 12 + If $y = f(u)$ and $u = f(x)$ then $\frac{dy}{dx} = \frac{dy}{du} \times \frac{dx}{du}$ A square matrix is said to be diagonal mat	$= \begin{bmatrix} 10 & 4 & 9 \\ 10 & 4 & 9 \end{bmatrix}$ sion 5	CO1		
 a) M b) S c) H d) H 	The or False. Matrix inverse exist only when determinant is Sum of following series is 216 $-\frac{1}{4} + \frac{1}{2} - 1 + 2 - 4 + 4$ For given sets A,B,C $(A \cup B) \cup C = A \cup A$ For two matrix A and B (A - B)' = A' - 4 Derivative of a^x is also a^x where a is constant	8 ∞ (B ∪ C) - B'	C01		

(iv) If $y = [f(x)]^n$ where f(x) is function of x and n is real number then $\frac{dy}{dx} = \underline{\qquad}$ (vi) If $y = \frac{u}{v}$ where u and v are function of x and $v \neq 0$ then $\frac{dy}{dx} = \underline{\qquad}$ 6. Fill in the blanks: a) $\int_{2}^{-} (x^3) = 0$ b) If production is zero then <u></u>	4.	Fill in the blanks.		
(iii) Property tax isCost. (iv) If demand and supply of a commodity is denoted by Q_1^d and Q_1^s then condition of equilibrium is (v) $\int e^{3x^2} x dx$ can be solved using the method of integration. 5. Fill in the blanks. (i) If f(x) is continuous and odd function over [a,-a] then $\int_{-a}^{a} f(x) dx =$ (ii) The function $y = x^2 - 2x + 3$ has a minima at $\$ (iii) If a function f(x) has a point of minima at $x = c$ and $f''(c)$ 0. (iv) If $y = [f(x)]^n$ where f(x) is function of x and n is real number then $\frac{dy}{dx} =$ (vi) If $y = \frac{u}{v}$ where u and v are function of x and $v \neq 0$ then $\frac{dy}{dx} =$ 6. Fill in the blanks: a) $\int_{2}^{} (x^3) = 0$ b) If production is zero then is equal to fixed cost. c) Relationship between and quantity demanded is called demand function. d) $\frac{Revenue}{quantity sold}$ Is also called function e) If for any function at x=c, first derivative is zero and second derivative is		(ii) In case of price demand under normal condition of demand, x_d as p increases. (where x_d is quantity demanded of	of	601
(v) $\int e^{3x^2} x dx$ can be solved using the method of integration. 5. Fill in the blanks. (i) If f(x) is continuous and odd function over [a,-a] then $\int_{-a}^{a} f(x) dx = \ (ii) The function y = x^2 - 2x + 3 has a minima at \ (iii) If a function f(x) has a point of minima at x = c and f''(c)\0. (iv) If y = [f(x)]^n where f(x) is function of x and n is real number then \frac{dy}{dx} = \ (vi) If y = \frac{u}{v} where u and v are function of x and v \neq 0 then \frac{dy}{dx} = \ 6. Fill in the blanks: a) \int_2^{-\$		(iii) Property tax is Cost. (iv) If demand and supply of a commodity is denoted by Q_1^d and Q_1^s the	n	COI
Fill in the blanks.(i) If $f(x)$ is continuous and odd function over $[a,-a]$ then $\int_{-a}^{a} f(x) dx = _$ (ii) The function $y = x^2 - 2x + 3$ has a minima at $_$. (iii) If a function $f(x)$ has a point of minima at $x = c$ and $f''(c)\0$. (iv) If $y = [f(x)]^n$ where $f(x)$ is function of x and n is real number then $\frac{dy}{dx} = _$ (vi) If $y = [f(x)]^n$ where u and v are function of x and $v \neq 0$ then $\frac{dy}{dx} = _$ 5CO6.Fill in the blanks: a) $\int_2^{-} (x^3) = 0$ 5COb) If production is zero then $_$ is equal to fixed cost. c) Relationship between $_$ and quantity demanded is called demand function.5COd) $\frac{Revenue}{quantity sold}$ Is also called $_$ function e) If for any function at $x=c$, first derivative is zero and second derivative is5CO		(v) $\int e^{3x^2} x dx$ can be solved using the method of integration		
$\int_{-a}^{a} f(x) dx = \underline{\qquad}$ (ii) The function $y = x^2 - 2x + 3$ has a minima at $\underline{\qquad}$. (iii) If a function $f(x)$ has a point of minima at $x = c$ and $f''(c) \0$. (iv) If $y = [f(x)]^n$ where $f(x)$ is function of x and n is real number then $\frac{dy}{dx} = \underline{\qquad}$ (vi) If $y = \frac{u}{v}$ where u and v are function of x and $v \neq 0$ then $\frac{dy}{dx} = \underline{\qquad}$ 6. Fill in the blanks: a) $\int_{2}^{2} (x^3) = 0$ b) If production is zero then is equal to fixed cost. c) Relationship between and quantity demanded is called demand function. d) $\frac{Revenue}{quantity sold}$ Is also called function e) If for any function at x=c, first derivative is zero and second derivative is	5.	Fill in the blanks.		
(iii) If a function $f(x)$ has a point of minima at $x = c$ and $f''(c)0.$ (iv) If $y = [f(x)]^n$ where $f(x)$ is function of x and n is real number then $\frac{dy}{dx} =$		(i) If $f(x)$ is continuous and odd function over [a,-a] then $\int_{a}^{a} f(x) dx = ___$		
$\frac{dy}{dx} = $ $\frac{dy}{dx} = $ 6. Fill in the blanks: a) $\int_{2}^{$		(iii) If a function $f(x)$ has a point of minima at $x = c$ and $f''(c)0.$ (iv) If $y = [f(x)]^n$ where $f(x)$ is function of x and n is real number then $\frac{dy}{dx} = \$	5	CO1
$\int_{2}^{$	6.			
 c) Relationship between and quantity demanded is called demand function. d) Revenue quantity sold Is also called function e) If for any function at x=c, first derivative is zero and second derivative is 		ſ		
function. 5 CO d) Revenue Is also called function 5 e) If for any function at x=c, first derivative is zero and second derivative is 6 1		b) If production is zero then is equal to fixed cost.		
e) If for any function at x=c, first derivative is zero and second derivative is				CO1
		d) $\frac{Revenue}{quantity sold}$ Is also called function		
negative then at x=c function will have itsvalue.		 e) If for any function at x=c, first derivative is zero and second derivative i negative then at x=c function will have itsvalue. 	s	

			SECT	ION B		(5x10=50 N	(larks)
1.	Integrate the follow	ving function	:				
	$\int_{-4}^{-1} x^2 (3-4x) dx$						CO2
2.	Find the value of th	ne Determina	_	$ \begin{array}{ccc} 2 & 0 \\ 1 & 3 \\ -1 & 4 \end{array} $		10	CO2
3.	Find the maximum		m value of $(x) = x^3 - $	$12x^2 + 3$	36x + 17	10	CO2
4	Differentiate the fo	10	CO3				
5	Find the derivative	10	CO3				
	SECTION C ((1x20=20	Marks)
1	a) A salesman has which have different Month	ems					
	Wonth	A	lles of units B	С	Total commission drawn(₹)		
	January February March	90 130 60	100 50 100	20 40 30	800 900 850	_	
	Using Matrix methods find out the rate of commission of items A , B , and C . b) If, MC is marginal cost and MR is marginal revenue and $MC = 20 + \frac{x}{30}$, and $MR = 35$, The fixed cost is 2500, determine the maximum profit and profit maximising level output.				20	CO4	