Name: Enrolment No:		
Course Progra Course	\qquadUNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, January 2021 Mathematical Economics I Semester: I Code: ECON1017 (Hons.) Economics Time: 03 Hours.	
SECTION A Each question carries 5 marks.		
S. No.	Questions	CO
Q1	Let $A=\left\{x \mid x=n^{2}\right.$, where $\left.n=1,2,3,4\right\}$. Write set A in roster form.	CO1
Q2	$y=\sqrt{3-x}$, Find the range and domain of the function.	CO1
Q3	$f(x)=x^{2}+1$, Find $f(-1), f(0)$ and $f(2)$	CO1
Q4	$\begin{aligned} & \mathrm{A}=\{2,3,5,6,7,8\}, \mathrm{B}=\{1,2,5,6,8,10\} \text { and } \mathrm{C}=\{3,5,9,12\} \\ & \text { Find }(A \cup B) \cup C,(A \cap B) \cap C,(A \cap B) \cup C \end{aligned}$	CO1
Q5	Let $y=30 x-2 x^{2}$. Find the value of x at which the function is at maximum	CO2
Q6	Let $A=\left[\begin{array}{ll}4 & 9 \\ 2 & 6\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 7 \\ 5 & 4\end{array}\right]$ Find the rank of matrix A and B.	CO2
SECTION B Each question carries 10 marks.		
Q 7	$z=2 x^{3}-3 x^{2}+400 x+50, \text { where } x>0 .$ Determine if this function is convex or concave.	CO2
Q 8	Use Cramer's rule to solve for the unknowns in the following system of equations. $\begin{aligned} & 4 x+y-5 z=8 \\ & -2 x+3 y+z=12 \\ & 3 x-y+4 z=5 \end{aligned}$	CO3
Q 9	Find the inverse of matrix A, which is given below. $A=\left[\begin{array}{lll} 4 & 2 & 5 \\ 3 & 1 & 8 \\ 9 & 6 & 7 \end{array}\right]$	CO1

Q 10	$f(x)=x^{3}-18 x^{2}+96 x-80$ Find the critical values of x. Determine whether the function is at relative maximum or relative minimum. Identify the inflection point.	CO3
Q 11	Integrate of the following functions. $f(x)=1 / \sqrt{x}$ $f(x)=2 x^{8}+2$	CO1
\quadEach question carries 20 Marks. Answer any one question.		
Q12	Optimize the following utility function $U=x^{0.3} y^{0.5}$ subject to the budget constraint $6 x+2 y=384$, where x and y represent two different goods. Price per unit of x and y are Rs. 6 and Rs. 2, respectively. Income of the consumer is Rs. 384. Find the value of x and y at which the utility function is maximum.	CO4
$z=3 x^{3}-5 y^{2}-225 x+70 y+40$ Find the critical values of x and y. Determine whether the function is at relative maximum, relative minimum, inflection point or saddle point.		

