

SECTION B

1. Each question will carry 10 marks
2. Instruction: Answer all questions

Q7.	Given $\mathrm{Q}=200-5 \mathrm{P}+0.05 \mathrm{Y}$, where, Q is quantity demanded, P is price, and Y is income, and given $\mathrm{P}=50$ and $\mathrm{Y}=10000$, find the price and income elasticity of demand.	[10]	CO2
Q8.	Find total differentials for the following utility functions: a. $\quad U\left(x_{1}, x_{2}\right)=a x_{1}+b x_{2}$ b. $U\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{3}+x_{1} x_{2}$ c. $U\left(x_{1}, x_{2}\right)=x_{1}^{a} x_{2}^{b}$	[10]	CO 2
Q9	For each $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$ use the implicit function rule to find $\partial y / \partial x$ and $\partial y / \partial z$. (a) $F(x, y, z)=x^{3} y^{4}+z^{3}+x y z=0$ (b) $F(x, y, z)=3 x^{2} y^{2}+x z^{3} y^{2}+y^{3} z x^{3}+y^{2} z=0$	[10]	CO2
Q10.	Use the Langrage- multiplier method to find the stationary value of z . $z=x y$, subject to $x+2 y=2$	[10]	CO3
Q11.	Find the partial total derivatives $\frac{\delta w}{\delta u}$ and $\frac{\delta w}{\delta v}$ if $w=a x^{2}+b x y+c u$, where $x=\alpha u+\beta v$ and $y=\gamma u$. (Use channel Map)	[10]	$\mathrm{CO3}$

Section C

1. Each Question carries 20 Marks.

2. Instruction: Solve the problems

Q12. A firm has the following total cost and demand functions:

$$
C=\frac{1}{3} Q^{3}-7 Q^{2}+111 Q+50 ; Q=100-P
$$

a. Does the total cost function satisfy the coefficient restrictions?
b. Write out total revenue function R in terms of Q.
c. Formulate the total profit function π in terms of Q .
d. Find profit maximization level of output Q^{*}.
e. What is the maximum profit?

