Name Enro	e: Iment No:					
UNIVERSITY OF PETROLEUM & ENERGY STUDIES DEHRADUN End-Semester Examination 2021						
Subje Code		00 Hrs				
1. Ead	SECTION A ch Question will carry 5 Marks					
2. Ins	truction: Write T for true and F for false		1			
Q1	Verify MPP of L and K: Cobb-Douglas production function $(\alpha + \beta = 1)$ Q = 96K ^{0.3} L ^{0.7} $MPP_{K} = \frac{\partial Q}{\partial K} = (0.3)96K^{7}L^{0.7} = 28.8K^{7}L^{0.7}$ $MPP_{L} = \frac{\partial Q}{\partial L} = (0.7)96K^{0.3}L^{-0.3} = 67.2K^{0.3}L^{-0.3}$	[5]	CO1			
Q2	The following equations are non-linearly dependent to each other.					
	$y_1 = 2x_1 + 3x_2$ $y_2 = 4x_1^2 + 12x_1x_2 + 9x_2^2$	[5]	CO1			
Q3						
	The f_x of $f(x, y) = (x^2 - 1)/xy$ is $(x^2 + 1)/x^2y$	[5]	CO1			
	If the utility function of an individual takes the form					
Q4	$U = U(x_1, x_2) = (x_1 + 2)^2 (x_2 + 3)^3$ where U is total utility and x_1 and x_2 are two commodities consumed, then the marginal utility of 3 units of each commodity consumed is 2160.	[5]	C01			
Q5	The income – elasticity of the consumption function $C = a - bY$ with (a>0; 0 <b<1) <math="" is="">\frac{bY}{a+bY}.</b<1)>	s [5]	C01			
Q6	The stationary value of $y = -2x^2 + 8x + 7$ is 15	[5]	C01			

	SECTION B		
	h question will carry 10 marks ruction: Answer all questions		
Q7.	Given Q=200-5P+0.05Y, where, Q is quantity demanded, P is price, and Y is income,	[10]	
	and given $P=50$ and $Y=10000$, find the price and income elasticity of demand.		CO2
Q8.	Find total differentials for the following utility functions:		
	a. $U(x_1, x_2) = ax_1 + bx_2$		
	b. $U(x_1, x_2) = x_1^2 + x_2^3 + x_1 x_2$	[10]	CO2
	c. $U(x_1, x_2) = x_1^a x_2^b$		
Q9	For each $F(x,y,z) = 0$ use the implicit function rule to find $\partial y / \partial x$ and $\partial y / \partial z$.		
	(a) $F(x,y,z) = x^3y^4 + z^3 + xyz = 0$	[10]	CO2
	(b) $F(x,y,z) = 3x^2y^2 + xz^3y^2 + y^3zx^3 + y^2z = 0$		
Q10.	Use the Langrage- multiplier method to find the stationary value of z.	[10]	
	z = xy, subject to $x + 2y = 2$		CO3
Q11.	Find the partial total derivatives $\frac{\delta w}{\delta u}$ and $\frac{\delta w}{\delta v}$ if $w = ax^2 + bxy + cu$, where $x = \alpha u + \beta v$	[10]	
	and $y = \gamma u$. (Use channel Map)		CO3
	Section C		
	ch Question carries 20 Marks. truction: Solve the problems		
Q12.	A firm has the following total cost and demand functions:		
	$C = \frac{1}{3}Q^3 - 7Q^2 + 111Q + 50; \ Q = 100 - P$		
	a. Does the total cost function satisfy the coefficient restrictions?		
	b. Write out total revenue function R in terms of Q.		
	c. Formulate the total profit function π in terms of Q.	[20]	CO4
	d. Find profit maximization level of output Q^* .		
	e. What is the maximum profit?		