SIMULATION OF CUMENE MANUFACTURING

Submitted By Y.RAM RAKESH R080208013

Master of Technology in Refining & Petro Chemical Engineering (2008-10)

College of Engineering
University of Petroleum & Energy Studies
Dehradun
May, 2010

SIMULATION OF CUMENE MANUFACTURING

A thesis submitted in partial fulfilment of the requirements for the Degree of

Master of Technology

(Refining & Petrochemical Engineering)

By

(Y.Ram Rakesh)

Under the guidance of

Mr. B. Uma Shankar

(Assistant professor)

Approved

Dean

College of Engineering

University of Petroleum & Energy Studies

Dehradun

May, 2010

CERTIFICATE

This is to certify that the work contained in this thesis titled "SIMULATION OF CUMENE MANUFACTURING" has been carried out by **Mr.B.Uma shankar**. under my/our supervision and has not been submitted elsewhere for a degree.

Mr. B. Uma shankar.

(Assistant professor)

Date:

ACKNOWLEDGEMENT

I wish to acknowledge my sincere thanks to **Prof.Dr.Srihari**, Dean, College of Engineering Studies, for his timely support and help.

I wish to acknowledge my sincere thanks to **Prof.Dr. K. V. Rao**, Head, College of Engineering Studies, for his timely support and help.

I would like to express my grateful thanks to **Prof. Dr .R.P.Badoni**, College of Engineering studies, University of Petroleum and Energy studies, for his timely suggestions and help in completing this project.

I take this opportunity to express my gratitude to my project guide Mr.B.Uma Shankar, (Assistant professor), College of Engineering Studies, University of Petroleum and Energy Studies, for his valuable advice, inspiring instruction, resourceful guidance, active supervision and constant encouragement throughout my project period.

I take this opportunity to express my gratitude to my parents, whose blessings, support and constant encouragement has fetched me success in all my activities.

I wish to acknowledge my thanks to all my friends and colleagues for the support and encouragement.

Y.RAM RAKESH

CONTENTS

S.No	Title	Page No.s
1.	Abstract	3
2.	Introduction & Properties	4
3.	Uses	5
4.	Process Description	6
5.	Process Flow Sheet For Cumene Production	7
6.	Operating Conditions	8
7.	Kinetics	10
8.	Thermodynamic Package Property Method Selection	11
9.	Base Case Simulation Results	18
10.	Design Specs	28
11.	Sensitivity Analysis	29
11.	Optimization	36
12.	Cost Estimation	38
13.	Conclusion	39
14.	References-	39

ABSTRACT

Objective of this project is to use Aspen plus as a simulation tool to simulate a flow sheet for the Manufacturing of Cumene with benzene and propylene as the raw materials. The simulation of various equipments such as Plug Flow Reactor, Distillation Column, Heaters and Flash Column are default with in this project.

The project presents improvement of conversion by varying the distillate to feed ratio of the Distillation Columns using Design Specs.

Sensitivity analysis has been performed in which the reflux ratio of the distillation columns has been varied and a graph between the reflux ratio and mole fraction of the cumene has been plotted and the optimum reflux ratio is found for best separation. Sensitivity analysis is also been performed for the plug flow reactor by varying the length of the tube and a graph is plotted between the length of the tubes and the mole fraction the cumene and the optimum length of the tube is determined.

The Project presents a case of optimization, in which the reboiler duty is optimized to get a minimum objective function. The project also deals with choice of proper thermo package. Calculator option is used to find out the total profit of the plant.

The Product Cumene Recovery is increased up to 98.05% with the use of Design spec. Sensitivity, Optimization when compared to Base case. Also Product Purity increased approximately to 85.5% with the use of above techniques.

INTRODUCTION

Cumene is the common name for **isopropylbenzene**, an organic compound that is an aromatic hydrocarbon. It is a constituent of crude oil and refined fuels. It is a flammable colorless liquid that has a boiling point of 152 °C. Cumene is produced by reacting propylene and benzene over an acid catalyst. Cumene may be used to increase the octane in gasoline, but its primary use is as a feedstock for manufacturing phenol and acetone. The Chemical formula for cumene is C_6H_5 - C_3H_7 .

The unit, to which I am assigned, converts the benzene and propylene into styrene, producing around 156322.67 Rs/hr.

PROPERTI

Appearance: Clear, colorless liquid.

Odor: Sharp penetrating aromatic odor.

Solubility: Insoluble in water.

Specific Gravity: 0.864.

pH: No information found.

% Volatiles by volume @ 21C (70F): 100

Boiling Point: 152C (306F)

Melting Point:-96C (-141F)

Vapor Density (Air=1): 4.1

Vapor Pressure (mm Hg):8 @ 20C (68F)

Evaporation Rate: No information found.

Molecular Weight: 120.20.

Effects of cumene:

Danger!! Harmful or fatal if swallowed. Flammable liquid and vapor. Harmful if inhaled or absorbed through skin. Causes irritation to skin, eyes and respiratory tract, affects central nervous system.

USES

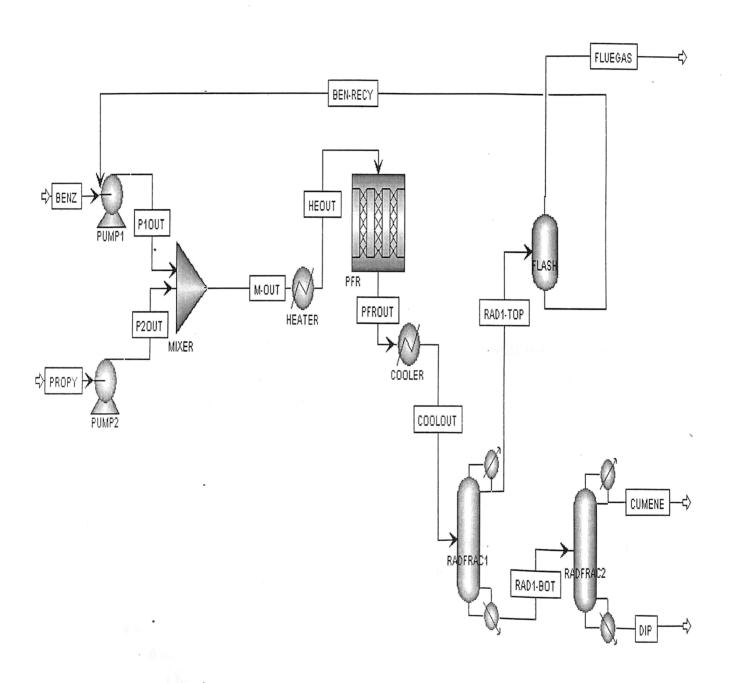
Around 98% of cumene is used to produce phenol and its co-product acetone. However, the outlook for cumene is largely dependent on the performance of phenol's derivatives which have resulted in healthy growth rates for cumene.

- It is also used as an important raw material in the manufacture of pesticide intermediates such as Para Cumidine.
- It finds application in the manufacture of cumene hydroperoxide, dicumyl peroxide which are used as Initiators in polymerisation process, grafting of vinyl monomers onto polymer backbone, curing of resins and rubber etc.
- It finds application as a good solvent for flats and resins.
- It is used as thinner for paints, enamels and lacquers used as a component in aviation gasolines which enables to improve the octane rating of internal combustion engines.

PROCESS DESCRIPTION

Process flow diagram for the production of cumene is shown below. The raw materials are benzene and propylene (which has small amounts of propane). Benzene and propylene are fed from separate storage tanks namely benz and propy through pump1 and pump2 respectively. These two raw materials are then fed into the mixer for the mixing purpose then the mixture M-out is to be heated by the heater. The heater outlet is then fed into the plug flow reactor. The process feed to the reactor consists of 75% excess benzene. In the reactor, benzene and propylene react in an isothermal, exothermic reaction to form cumene. The PFR out consists of the mixture of cumene, p-diisopropylbenzene (p-DIP), benzene and propylene are obtained. Then the mixture is

cooled in the cooler and the cool-outlet is fed into the rad frac column1 where the top product contains of large amount of benzene and small fractions of propylene and propane which are further fed to the flash column where the top product are natural gas and the fuel gas by-product of the process goes out as the fuel gases and the bottoms contains large amounts of benzene which is recycled to the pump1. The bottom product from the Rad Frac1 consists of large amounts of cumene and small amounts of p-DIP is fed into the Rad Frac2 where the top product is the desired product Cumene and a very small amount of the p-diisoproplbenzene is produced.


Cumene Production Reactions:

The reactions for cumene production from benzene and propylene are as follows:

$$C_3H_6$$
 + $C_6H_6 \rightarrow C_9H_{12}$
propylene benzene cumene

$$C_3H_6 + C_9H_{12} \rightarrow C_{12}H_{18}$$

propylene cumene $p-diisopropyl$ benzene

PROCESS FLOW SHEET FOR CUMENE PRODUCTION

OPERATING CONDITIONS

Feed Streams:

Benz: Benzene, pure liquid, 25°C and 101.3 kPa.

Propy: Propylene with 4.5 wt% propane impurity, saturated liquid at 25°C.

Effluent Streams

Fuel Gas: Fuel gas stream, credit may be taken for LHV of fuel.

Cumene: Cumene product, assumed pure.

Equipment

Pump1: The pump increases pressure of the benzene feed from 101.3kPa to about 3400 kPa. Pump operation may be assumed isothermal and the cost of energy may be neglected.

Pump2: The pump increases the pressure of the propylene feed to about 3400 kPa. Pump operation may be assumed isothermal and the cost of energy may be neglected.

Mixer: The mixer is used to mix the two feed streams.

Heater: The heater desubcools, vaporizes, and superheats the mixed feed up to 400°C and a pressure of 3200kPa.

Plug Flow Reactor: The reactor type is reactor with specified tempature and is constant at inlet temperature to achieve the desired reaction.

Configuration of reactor:

Length = 6 m.

Diameter = 4 in.

Number of tubes = 800.

The following reaction occurs:

$$C_3H_6 + C_6H_6 \rightarrow C_9H_{12}$$

propylene benzene cumene

There are no side reactions.

Cooler: Cooler is operated at 120 °C temperature and a pressure of 1 atm.

Flash Vessel: The flash is operated at a temperature of 20°C and a pressure of 1 bar. Here the large amounts of benzene are recycled as bottom product and fuel gases as the top product.

Rad Frac Column1: Column is operated with condenser pressure of 1bar and a temperature of -25.7°C. Reboiler pressure is 1 bar and a temperature of 101.5°C. The column is operated at a temperature is 120°C and a pressure of 1.01bar. The no of stages are 10. In this column separation occurs and where propylene and benzene are separated as top product and cumene and p-diisopropylbenzene as the bottom product.

Rad Frac Column2: Column is operated with condenser pressure of 1bar and a temperature of 105.9°C. Reboiler pressure is 1 bar and a temperature of 148.6°C. The column is operated at a temperature is 143°C and a pressure of 1.01bar. The no of stages are 11. In this column separation occurs and where the desired product cumene is collected as the top product and p-diisopropylbenzene is the bottom product.

KINETICS:

The reactions for cumene production from benzene and propylene are as follows:

Reaction1:

$$C_3H_6 + C_6H_6 \rightarrow C_9H_{12}$$

propylene benzene cumene

Reaction2:

$$C_3H_6 + C_9H_{12} \rightarrow C_{12}H_{18}$$

propylene cumene $p-diisopropyl$ benzene

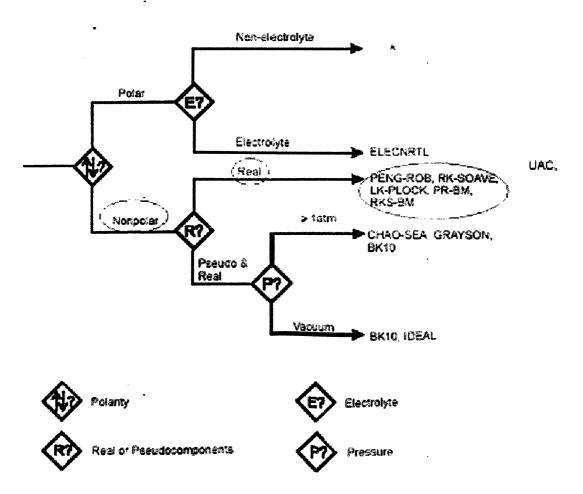
Power law is used to define the kinetics.

The kinetics are calculated from the expression as below:

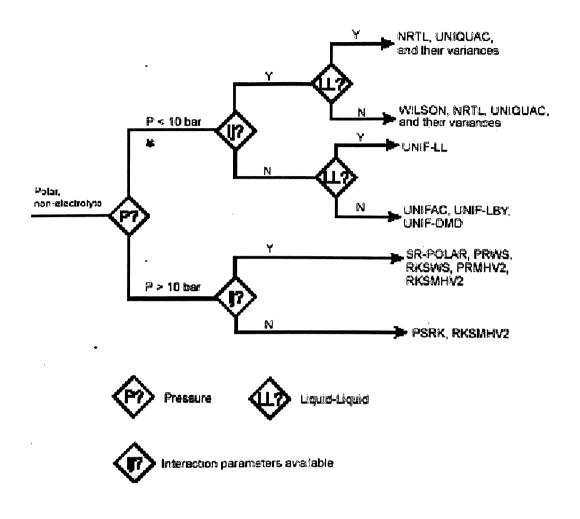
Kinetic factor = k
$$(T/T_0)^{-n} * e^{(-E/R)(1/T - 1/T_0)}$$

The units of reaction rate are K mol/m³sec.; the activation energy is in cal/mol.

Therefore, the values for the k and E are taken as


$$k = 3435431$$
 and $E = 24900$ cal/mol (For Reaction # 1)

k = 284871452 and E = 35080 cal/mol (For Reaction # 2).


THERMODYNAMIC PACKAGE PROPERTY METHOD SELECTION:

Choice of thermodynamic package is an important area of concern for a Simulation engineer. An incorrect choice would undermine the accuracy of model and hence the decisions based on the model could prove to be costly.

Thermodynamic Packages that can be used RK-SOAVE, PENG-ROB WILSON, NRTL, UNIQUAC.

* See the next figure to continue

RK-SOAVE Method:

Property methods & m	nodels	Property method:	
Process type: •	ALL 🕶	RK-SOAVE	*
Base method:	RK-SOAVE 🕶	Modify prope	rty models
Henry components:	p-en-land transfer and control and an en-land control and control	E09.	ESAKSTO
Petroleum calculatio	n options	Dara reti	- C
Free-water method:	STEAM-TA ,	Liquid gamma	e fred to Carekon common household of the core of
Water solubility:	2	र्वे असे के असे हैं।	
		esa urt ermödige	·HLMX*07
Electrolyte calculation	on options	Est Michaelman	VLMXXX
Chemistry ID:	•	Heat or mixing	
Use true-compor	nents	Poyrting com	ection
,		Use lig. retere	ence-state enthali

Result for the RK-SOAVE Method:

Material Vol. & Curves	Wt % Curves	Petro, Curves	Poly. Curves
Display: Stream: ;❤	Format: GEN_M	~]	Stream Table
•	CUMENE ,	*	
Temperature C	105.9		
Pressure bar	1.000		
Vapor Frac	0.000		
Mole Flow kmol/hr	194.331		
Mass Flow kg/hr	20125.903		
Volume Flow cum/hr	25.736		
Enthalpy MMkcal/hr	0.472		
Mole Flow			
BENZE-01 ·	76.525		
PROPY-01	0.129		
CUMENE	117.659		
PROPA-01	0.018		
P-DII-01	0.001		

Final Result:

The reason to arrive in this conclusion is the component benzene, propylene and cumene are non-polar and real. Also with the help of user guide of Aspen, I have arrived to the the conclusion that by comparing results with selected thermo package, **RK-SOAVE** showed better results and is also justified very clearly above.

BASE CASE SIMULATION RESULTS:

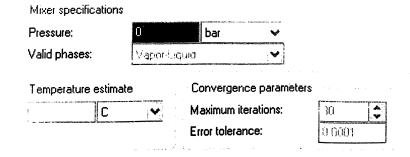
Pump1 Input:

Specifications	Calculation O	ptions I	Flash Options	Utility)
Model				
Pump		0	Turbine	
Pump outlet spe	cification			
Discharge pre	essure:	3400	kPa	Y
O Pressure incr	ease:		bar	3.9
O Pressure ration	X.,			former (March 1986) for the administration
O Power require	∍d:		kW/	63
O Use performa	ance curve to del	termine discl	harge conditio	ns

Pump 1 result:

isplay: Streams, 1/4 🕶	Format: GER A	1	v	Stream Tabl	е
	BEN-RECY (*)	BENZ	~	FOUUT :	*
Temperature C	20.0	25.0		24.6	
Pressure bar	1.000	1.013		34.000	
Vapor Frac	0.000	0.000		0.000	
Mole Flow kmol/hr	227.921	210.000		437.921	
Mass Flow kg/hr	17200.025	16403.864		33603.889	
Volume Flow cum/hr	20.062	18.810	\neg	38.972	
Enthalpy MMkcal/hr	2.421	2.475	\neg	4.946	
Mole Flow			\neg		
BENZE-01	211.053	210.000	Ť	421.053	
PROPY-01	15.189		\exists	15.189	
CUMENE	0.009		_	0.009	
PROPA-01	1.670		\dashv	1.670	
P·DII·01	TRACE		\dashv	TRACE	

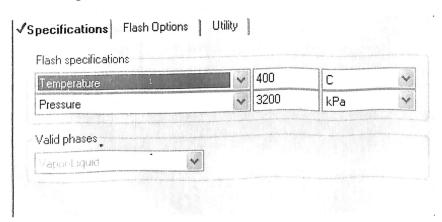
Pump2 Input:


/Specifications	Calculation C	options	Flash Options	Utility	
Model		an, enemonis — en e	A CHARLES A CHARLES	Marie Carante de la companya della companya della companya de la companya della c	
Pump		0	Turbine .		
Pump outlet spec	ification	with a state of the state of th			
Discharge pre	essure:	3400	kPa	¥	
Pressure incre	ease:		bar	→ E	
Pressure ration	:				
O Power require	d:		LW/	A	
O Use performa	nce curve to d	etermine disc	harge condition	าร	
	•				
Efficiencies	C. 71 CD 47 1990		r ·	e companye a companye	
Pump:		Dri	ver:	أسير جير يرج يسأ	

Pump2 Results:

splay: Streams 🚧 🗸	Format: 5(1)		~	Stream Table
	PAUF4 •		~	~
Temperature C	25.0	23.3		
Pressure bar	1166.000	34.000		
Vapor Frac	0.000	0.000		
Mole Flow kmol/hr	220.540	220.540		
Mass Flow kg/hr	9301.712	9301.712	\neg	
Volume Flow cum/hr	18.334	18.229		
Enthalpy MMkcal/hr	0.164	-0.087	\neg	
Mole Flow			$\neg \dagger$	
BENZE-01		 	$\neg \dagger$	
PROPY-01	210.000	210.000		
CUMENE			-	
PROPA-01	10.540	10.540		

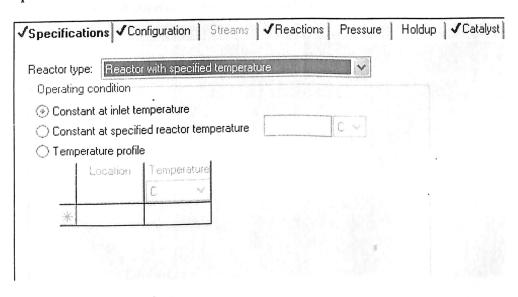
Mixer Input:


Flash Options

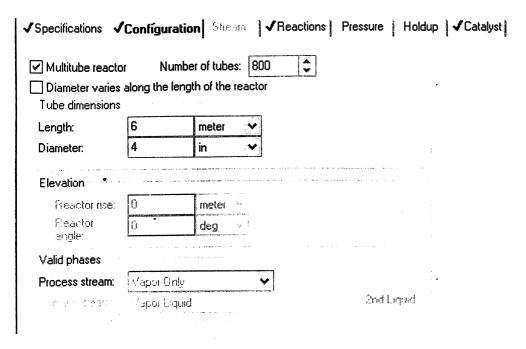
Mixer Result:

splay: Streams 💙	Format: GEN_	V V	Stream Table	
	P20UT 🕶	P10UT 🗸	м-оит 🕶	
Temperature C	23.3	24.6	25.2	
Pressure bar	34.000	34.000	34.000	
Vapor Frac	0.000	0.000	0.000	
Mole Flow kmol/hr	220.540	437.921	658.461	
Mass Flow kg/hr	9301.712	33603.889	42905.601	
Volume Flow cum/hr	18.229	38.972	55.828	
Enthalpy MMkcal/hr	-0.087	4.946	4.859	
Mole Flow	Ellik co		# ### No. 10 P. C.	
BENZE-01	R English	421.053	421.053	
PROPY-01 -	210.000	15.189	225.189	
CUMENĚ	A STATE OF THE STA	0.009	0.009	-
PROPA-01	10.540	1.670	12.210	
P-DII-01		TRACE	TRACE	

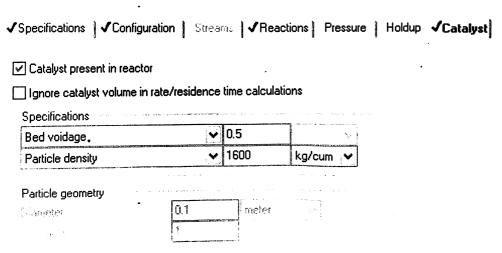
Heater Input:



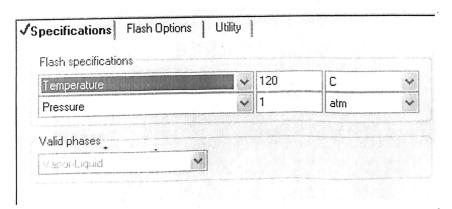
Heater Result:


splay: Streams 💙	Format: GEN_I	M	*	Stream Table
***************************************	M-OUT 🗸	HEOUT	~	
Temperature C	25.2	400.0		
Pressure bar	34.000	32.000		
Vapor Frac	0.000	1.000	1.1	1 1
Mole Flow kmol/hr	658.461	658.461		\
Mass Flow kg/hr	42905.601	42905.601	,	
Volume Flow cum/hr	55.828	1068.522		
Enthalpy MMkcal/hr	4.859	15.811		
Mole Flow				
BENZE-01	421.053	421.053		
PROPY-01	225.189	225.189		
CUMENE	0.009	0.009		
PROPA-01	12.210	12.210	711	taranti i
P-DII-01	TRACE	TRACE		

Plug Flow Reactor Input:

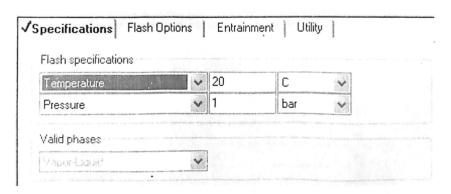

Specifications:

Configuration:


Catalyst:

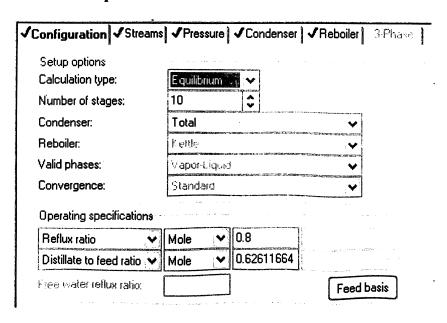
Plug Flow Reactor Results:

play: Streams 💙	Format: GF	NEW	*	Stream Table
	HEOUT	PFROU	· •	***************************************
Temperature C	400.0	400.0		
Pressure bar	32.000	32.000		
Vapor Frac	1.000	1.000	1	
Mole Flow kmol/hr	658.461	534.60	1	
Mass Flow kg/hr	42905.601	42905.6	01	
Volume Flow cum/hr.	1068.522	824.47	4	
Enthalpy . MMkcal/hr	15.811	12.882		
Mole Flow				
BENZE-01	421.053	298.10	4	Indiana di A
PROPY-01	225.189	101.32	9	
CUMENE	0.009	122.04	7	
PROPA-01	12.210	12.210	1	
P-DII-01	TRACE	0.911		


Cooler Input:

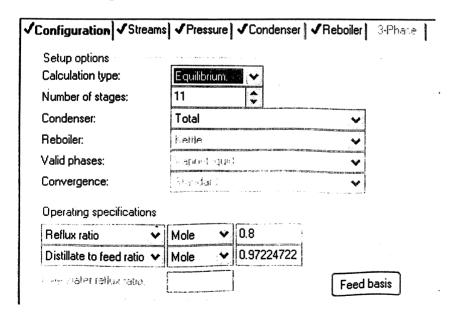
Cooler Result:

terial Heat Load	Vol.% Curves	Wt. 2 Cur	Ves	Petro, Cur
risplay: Streams 💙	Format: GEN_	М	٧	Stream Table
	PFROUT -	COGLOUT	*	
Temperature C	400.0	120.0		02 aprendi a 192 (200 M) (200 M) (20 (200 C) (200 C) (200 C) (200 C)
Pressure bar	32.000	1.013		
Vapor Frac	1.000	1.000		
Mole Flow kmol/hr	534.601	534.601		
Mass Flow kg/hr	42905.601	42905.601		STATE OF THE STATE OF
Volume Flow cum/hr	824.474	16872.253		The state of
Enthalpy MMkcal/hr	12.882	7.488		77-
Mole Flow				1
BENZE-01	298.104	298.104		West Market
PROPY-01	101.329	101.329		
CUMENE	122.047	122.047	35.9	
PROPA-01	12.210	12.210		
P-DII-01	0.911	0.911	- 7	


Flash Column Input:

Flash Column Result:

Material	ieat Load	Vol.2 Curves	Wt. % Curves	Petro, Curve:	Poly, Curves
Display: S	treams 🕶	Format: GEN_N	1 🗸	Stream Table	· · · · · · · · · · · · · · · · · · ·
	-	RAD1-TOP	FLUEGAS 💉	BEN-RECY 💉	~
Temper	ature C	-25.6	20.0	20.0	
Pressure	e bar	1.000	1.000	1.000	
Vapor F	rac	0.000	1.000	0.000	
Mole Flo	w kmol/hr	334.723	106.802	227.921	
Mass Fl	ow kg/hr	22085.505	4885.481	17200.025	
Volume	Flow cum/hr	26.695	2559.327	20.062	
Enthalp	y MMkcal/hr	1.914	0.344	2.421	
Mole Flo	DW .				
BENZ	E-01 ·	221.321	10.268	211.053	
PROP	Y-01	101.200	86.012	15.189	
CUME	NE	0.009	< 0.001	0.009	
PROP	4-01	12.192	10.522	1.670	•
P-DII-0	1	TRACE	TRACE	TRACE	

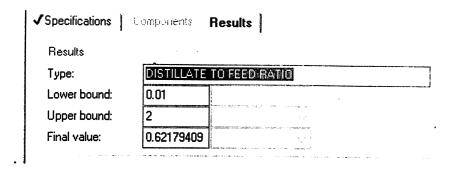

Rad Frac1 Input:

Rad Frac1Result:

Material Hear Load	Vol.% Curver	Wrt. % Curves	Petro, Jurves	Poly Dur
	*** *** *** *** *** *** *** *** *** **			
Display: Streams ✓	Format: GEN_N	· 🗡	Stream Table	
	COOLOUT 💌	RADI-TOP 🎺	RAD1-BOT 🕶	
Temperature C	120.0	-25.6	106.7	
Pressure bar	1.013	1.000	1.000	
Vapor Frac	1.000	0.000	0.000	•
Mole Flow kmol/hr	534.601	334.723	199.878	
Mass Flow kg/hr	42905.601	22085.505	20820.093	
Volume Flow cum/hr	16872.253	26.695	26.647	
Enthalpy MMkcal/hr	7.488	1.914	0.437	·····
Mole Flow				
BENZE-01	298.104	221.321	76.783	
PROPY-01	101.329	101.200	0.129	
CUMENE	122.047	0.009	122.038	
PROPA-01	12.210	12.192	0.018	
P-DII-01	0.911	TRACE	0.911	***************************************

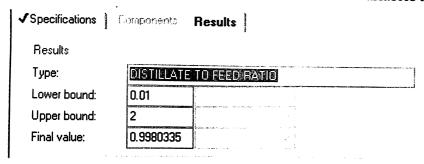
Rad Frac2 Input:

Rad Frac2 Result:


Material to load	Vol.2: Cur	The second second	विक्रिक्षिक स्टब्स्	. Pay Daves
Display: Streams	Format: GEN_N	i , v	Stream Table	
	RAD1-BUT ❖	CUMENE 💌	DIF 💌	· •
Temperature C	106.7	105.9	148.7	
Pressure bar	1.000	1.000	148.7 IENE	
Vapor Frac	0.000	0.000	0.000	•
Mole Flow*kmol/hr	199.878	194.331	5.547	
Mass Flow kg/hr	20820.093	20125.903	694.190	
Volume Flow cum/hr	26.647	25.736	0.930	
Enthalpy MMkcal/hr	0.437	0.472	-0.028	
Mole Flow				
BENZE-01 .	76.783	76.525	0.258	
PROPY-01	0.129	0.129	< 0.001	
CUMENE	122.038	117.659	4.379	
PROPA-01	0.018	0.018	TRACE	
P-DII-01	0.911	0.001	0.910	

DESIGN SPECIFICATIONS:

In using this option, we have to define two variables, one is DEFINE variable and the other is VARY variable. We have to check how the DEFINED variable varies if the VARY variable is changed.

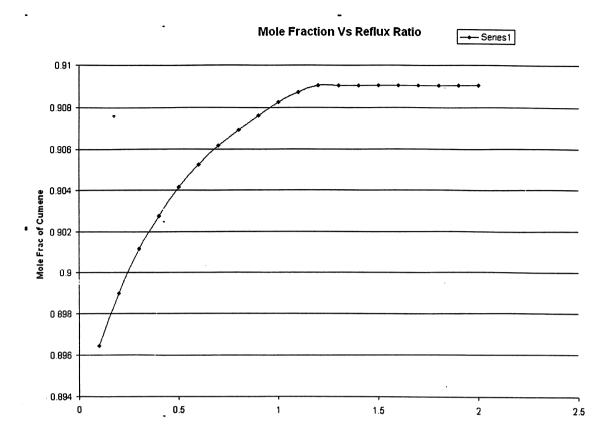

Rad Frac1:

Here mole recovery of Cumene in the top stream and DIP in the bottom stream is DEFINED variables. Distillate to Feed ratio is VARY variables in the rad frac column1.

Rad Frac2:

Here mole recovery of Cumene in the top stream and DIP in the bottom stream is DEFINED variables. Distillate to Feed ratio is VARY variables in the rad frac column2.

SENSITIVITY ANALYSIS:

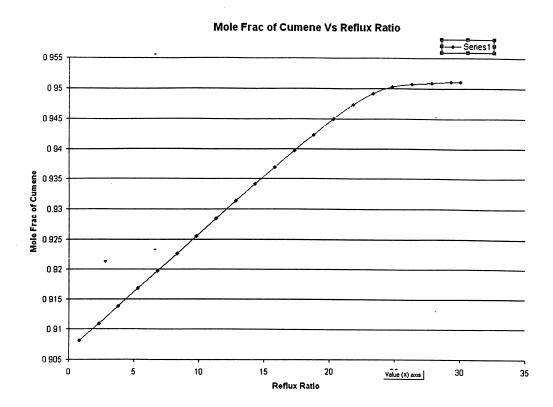

1. Sensitivity analysis was performed for the Rad Frac1

A sensitivity study between reflux ratio and mole recovery of cumene in bottoms of distillation column, gives the optimum reflux ratio required for maximum flow of cumene in bottoms.

In this sensitivity study we can know how a variable changes when the other parameters are changed. With this we can know at what point would be the maximum flow.

The results obtained by Sensitivity Analysis are plotted below.

Summary	Define V	ariable		
Row / Case	Status	VARY 1 RADFRAC1 COL-SPEC MOLE-RR	REFLU	SPEC
- 1	OK	0.1	0.1	0.89645195
2	OK	0.2	0.2	0.89899376
3	OK	0.3	0.3	0.90116824
4	OK	0.4	0.4	0.90274
5	OK	0.5	0.5	0.90412918
6	OK	0.6	0.6	0.90524098
7	OK	0.7	0.7	0.9061798
8	OK	0.8	0.8	0.90693025
9	OK	0.9	0.9	0.90760767
10	OK	1	1	0.90825395
11	OK	1.1	1.1	0.90871817
12	ОK	1:2	1.2	0.90902757
13	OK	1.3	1.3	0.90904668
14	OK	1.4	1.4	0.90904841
15	OK	1.5	1.5	0.90904919
16	OK	1.6	1.6	0.90904966
17	OK	1.7	1.7	0.90905
18	OK	1.8	1.8	0.90905027
19	OK	1.9	1.9	0.90905049
20	OK	2	2	0.90905067

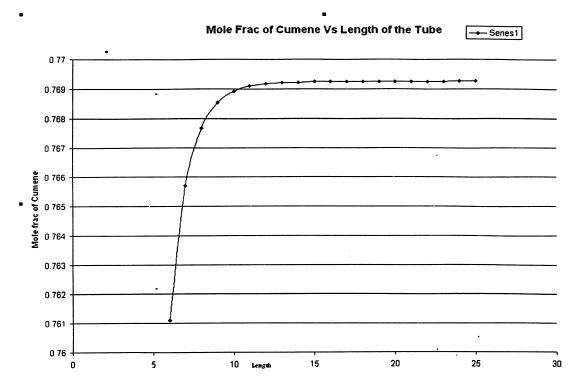


From the above graph the optimum reflux ratio for the rad frac 1 is found to be 1.25.

2. Sensitivity analysis was performed for the Rad Frac2

A sensitivity study between reflux ratio and mole recovery of cumene in top of distillation column, gives the optimum reflux ratio required for maximum flow of cumene in tops.

	Row / Case	Status	VARY 1 RADFRAC2 COL-SPEC MOLE-RR	REFLUX	SPEC
→	1	OK	Œ	0.8	0.90807059
40000	2	OK	2.3	2.3	0.91090613
d Street Street	3	ΟK	3.8	3.8	0.91383671
and the same	4	OK	5.3	5.3	0.916774
-	5	OK	6:8	6.8	0.91971142
-next	6	OK	8.3	8.3	0.9226359
255256	7	OK	9.8	9.8	0.92554475
******	8	OK	11.3	11.3	0.92843541
	9	OK	12.8	12.8	0.9313052
	10	OK	14.3	14.3	0.93414909
	11	OK	15.8	15.8	0.93696101
*****	12	OK	17.3	17.3	0.93972944
410000	13	OK	18.8	18.8	0.94243173
****	14	OK	20.3	20.3	0.94501866
	15	OK	21.8	21.8	0.94736843
	16	OK	23.3	23.3	0.94920496
	17	OK	24.8	24.8	0.9502579
	18	OK	26.3	26.3	0.95073325
24000	19	OK	27.8	27.8	0.95095733
	20	OK	29.3	29.3	0.9510787
	21	OK	30	30	0.95111666



From the above graph the optimum reflux ratio for the rad frac 2 is found to be 26.

3. Sensitivity analysis was performed for the Plug Flow Reactor.

A sensitivity study between length of the tube and mole recovery of cumene in the PFR out stream, gives the optimum Length of the tube required for maximum flow of cumene from the PFR out.

Sur	nmary	Define Va	riable		
	Row / Case	Status	VARY 1 PFR PARAM LENGTH	LENGTH	SPEC
			METER	METER	
 	1	OK	6	6	0.76108747
Acousters	2	OK	7	7	0.76570766
	3	OK	8	8	0.76768131
	4	OK	9	9	0.76855157
******	5	OK	10	10	0.76892976
	6	OK	11	11	0.76910536
*****	7	OK	12	12	0.76918094
en de servicio de la constanta	8	OK	13	13	0.76921226
continue	9	OK	14	14	0.76922139
*****	10	ŌΚ	15	15	0.76925097
anness.	11	OK	16	16	0.76926331
	12	OK	17	17	0.76926331
	13	OK	18	18	0.76926123
-	14	OK	19	19	0.76925945
atsom	15	OK	20	20	0.76925869
	16	OK	21	21	0.7692588
	17	OK	22	22	0.76926101
	18 ·	OK	23	23	0.76926487
	19	OK	24	24	0.76927728
	20	OK	25	25	0.76927943

From the above Graph the optimum length of the tube is found to be 15m.

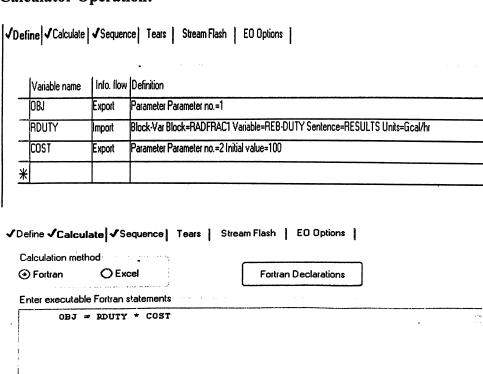
Base case	results	before	sensitivity
-----------	---------	--------	-------------

play: Greens 🔻 Fo	ormat GEN_M	▼ [Si	tream Table		•			
	HE CONTRACTOR	PFQ.		Friji Lit 🔥	RIGHT 🗸	arent v	DIP 🔻	
Temperature C	400.0	400.0	120.0	-25.6	106.7	105.9	148.7	******
Pressure bar	32.000	32.000	1.013	1.000	1.000	1.000	1.000	
Vapor Frac	1.000	1.000	1.000	0.000	0.000	0.000	0.000 ·	
Mole Flow kmol/hr	658.461	534.601	534.601	334.723	199.878	194.331	5.547	
Mass Flow kg/hr	42905.601	42905.601	42905.601	22085.505	20820.093	20125.903	694.190	
Volume Flow cum/hr	1068.522	824.474	16872.253	26.695	26.647	25.736	0.930	
Enthalpy MMkcal/hr	15.811	12.882	7.488	1.914	0.437	0.472	-0.028	
Mole Flow kmol/hr								
BENZE-01	421.053	298.104	298.104	221.321	76.783	76.525	0.258	
PROPY-01 +	225.189	101.329	101.329	101.200	0.129	0.129	< 0.001	
CUMENE	0.009	122.047	122.047	0.009	122.038	117.659	4.379	
PROPA-01	12.210	12.210	12.210	12.192	0.018	0.018	TRACE	
P-DII-01	TRACE	0.911	0.911	TRACE	0.911	0.001	0.910	

Base case results after sensitivity

* * * * * * * * * * * * * * * * * * *	ri naka a karangan a Personara	Approvate be the for	φ	* 1			en e	
play: Sireans v F	ormat*[GEN_M	Str	eam Table					
	HEOUT V	PFRQU" v	001001	RADITOP V		COMENE V	DP v	
Temperature C	400.0	400.0	120.0	-1.7	141.2	140.7	164.9	***************************************
Pressure bar	32.000	32.000	1.013	1.000	1.000	1.000	1.000	
Vapor Frac	1.000	1.000	0.923	0.000	0.000	0.000	0.000 -	
Mole Flow kmol/hr	749.931	554.507	554.507	347.185	207.321	201.567	5.754	
Mass Flow kg/hr	49845.587	49845.587	49845.587	25427.385	24418.147	23640.730	777.418	
Volume Flow cum/hr	1211.221	816.668	16079.299	29.578	32.446	31.395	1.058	
Enthalpy MMkcal/hr	18.333	13.686	7.108	2.731	-0.461	-0.409	-0.049	
Mole Flow kmol/hr								
BENZE-01	506.427	313.046	313.046	299.106	13.940	13.937	0.003	
PROPY-01	223.901	28.477	28.477	28.477	TRACE	TRACE	TRACE	
CUMENE	-0.006	191.344	191.344	0.006	191.338	187.630	3.708	
PROPA:01	19.597	19.597	19.597	19.595	TRACE	TRACE	TRACE	
P-DII-01	TRACE	2.043	2.043	TRACE	2.043	· < 0.001	2.043	

After comparing the results before sensitivity and after sensitivity the mole fraction of cumene is increased from 96.04% to 98%.


OPTIMIZATION

Optimization is done to decrease the re-boiler duty of the rad farc1 in order to decrease the operating cost.

The Objective function is defined as product of re-boiler duty and cost.

So, as the re-boiler duty is minimized the objective function is also minimized and the cost is also reduced.

Calculator Operation:

Calculator block ex	ecution sequence	
xecute:		Edwards Contract
The second and the second area and a second and a second		
Use import/export	variables	
Commence of the second		
_ist variables as imp	port or export	·
_ist variables as imp		·
Use import/export List variables as import variables:	port or export	

Optimization Input:

√ Define √0bje	ctive & Const	raints	√ Vary I	Fortran	Decla	arations
Objective fund	etion					
○ Maximize⊙ Minimize	OBJ		****************			77 111 100 201000 10000 10000
Constraints as	sociated with the	e optimiz	ation			
Available co	nstraints		Selecte	d constr	aints	
✓ Define ✓ Objecti Variable number:	√ 1		ble variable		arations	
Manipulated vari		Manipu	lated variable	Imits		
	ock-Var 🕶	Upper:	DATE OF THE PROPERTY OF THE PR	ay dang yang barang salah dan	CHARLES THE THE STATE OF THE ST	-Academic remed
Variable: M	**************************************	Report Line 1:	labels	Line 2:		
		·	re parameters	3	0.1	***************************************
		Step siz	e: m step size:		U. I	***************************************
		GAIITIG				ال. ــــــ

Optimization Result:

Results			
Define variable result Variable	s Initial value	Final value	Units
, oeu	333.829234	27.2287464	

COST ESTIMATION:

The advantage of using the calculator option is that we can do all the mathematical operations of any number of variables from our flow sheet. By using this I have found out the total profit of the plant

The cost for the different reactants and products taken into consideration are:

Benzene: 11.75Rs/kg.

Propylene: 1.4Rs/kg.

Cumene: 27.73Rs/kg.

Heat duty = 42.3 Gcal/hr.

Cost of the power= 94KW.

Here all variables which are used in the calculator are defined.

Variable name	Info. flow	Definition				
BENZ	Import	Mass-Flow Stream=BENZ Substream=MIXED Component=BENZENE Units=kg/hr				
PROPY	Import	Mass-Flow Stream=PROPY Substream=MIXED Component=PROPYLEN Units=kg/hr				
P1	Import	Block-Var Block=PUMP1 Variable=BRAKE-POWER Sentence=RESULTS Units=kW				
P2	Import	Block-Var Block=PUMP2 Variable=BRAKE-POWER Sentence=RESULTS Units=kW				
HDUTY	Import	Block-Var Block=HEATER Variable=QCALC Sentence=PARAM Units=Gcal/hr				
CDUTY	Import	Block-Var Block=COOLER Variable=QCALC Sentence=PARAM Units=Gcal/hr				
R1COND	Import	Block-Var Block=RADFRAC1 Variable=COND-DUTY Sentence=RESULTS Units=Gcal/hr				
R1REBO	Import	Block-Var Block=RADFRAC1 Variable=REB-DUTY Sentence=RESULTS Units=Gcal/hr				
R2COND	Import	Block-Var Block=RADFRAC2 Variable=COND-DUTY Sentence=RESULTS Units=Gcal/hr				
R2REBO	Import	Block-Var Block=RADFRAC2 Variable=REB-DUTY Sentence=RESULTS Units=Gcal/hr				
FLASH	Import	Block-Var Block=FLASH Variable=NET-DUTY Sentence=PARAM Units=Gcal/hr				
CUMENE	Export	Mass-Flow Stream=CUMENE Substream=MIXED Component=CUMENE Units=kg/hr				
PROF	Export	Parameter Parameter no.=1 Physical type=Unit-Price Units=\$/kg				
SP	Export	Parameter Parameter no.=2 Physical type=Unit-Price Units=\$/kg				
СР	Export	Parameter Parameter no.=3 Physical type=Unit-Price Units=\$/kg				
FEEDCO	Export	Parameter Parameter no.=4 Physical type=Unit-Price Units=\$/kg				
TDUTY	Export	Parameter Parameter no.=5 Physical type=Unit-Price Units=\$/kg				
PUMPCO	Export	Parameter Parameter no.=6 Physical type=Unit-Price Units=\$/kg				

✓Define Calculate ✓Sequence Tears Stream Flash EO Options Calculator block execution sequence Execute: Block name: Block type: Use imporVexport variables List variables as import or export P2 HDUTY CDUTY R1COND R1REB0 R2COND R2REB0 FLASH BENZ PROPY Import variables: CUMENE SP PROF CP FEEDCO TDUTY PUMPCO Export variables:

Profit Results:

Summary Define Variable

Define variable results

	Variable	Value read	Value written	Units
400000 A000000 A000000 A000000 A000000 A000000	BENZ	16403.8644		KG/HR
	PROPY	8836.9344		KG/HR
	P1	73.7156093		KW
	P2	-292.36005		KW
	HDUTY	13.4458217		GCAL/HR
	CDUTY	-8.3563649		GCAL/HR
	R1COND	-4.3257685		GCAL/HR
	R1REBO	0.27228746		GCAL/HR .
	R2COND	-52.592992		GCAL/HR
	R2REBO	52.6110993		GCAL/HR
	FLASH	0.46134798		GCAL/HR
المناطقة المناطقة المناطقة المناطقة	CUMENE	20708.2801	20708.2801	KG/HR
	PROF	3326.77683	3326.77683	\$/KG
	SP	12217.8846	12217.8853	\$/KG
	CP	7826.17945	7826.11743	\$/KG
appen 27. and	FEEDCO	7812.47855	7812.47855	\$/KG
	TDUTY	13.7009057	13.6388799	\$/KG .
	PUMPCO	0	0	\$/KG

The profit is calculated taking into account the amount of cumene produced, amount of benzene, propylene, expenditure due to energy and the cost of power.

The expressions are given as input to the calculator and profit is estimated.

Profit obtained is 156322.67 Rs/hr.

CONCLUSION:

The simulation of a plant manufacturing Cumene has been successfully carried out. The main introduction of the product is explained such as its properties and uses. Base case results are shown and the base case flow sheet involves units such as reactor, columns, flash column, mixer which are successfully simulated. Also cases for design spec, sensitivity are presented and the optimum values are determined from the sensitivity. A suitable thermodynamic package is considered for the simulation of the plant and justified it by comparing the results with other methods. Optimization is done in order to minimize the objective function. Costs are calculated using calculator and the profit is determined. This project truly helps us to understand and implement the concepts of Aspen Plus.

REFERENCES:

- www.sciencedirect.com
- www.kinetics.nist.gov.com
- <u>www.elsevier.com</u>
- http://www.che.cemr.wvu.edu
- http://www.the-innovation-group.com
- http://www.che.cemr.wvu.edu
- Aspen Help file.
- "Introduction to Chemical Technology" by Dryden's.