Name: Enrolment No:		1 UPES UNIVERSITY WITH A PURPOSE	
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination (Online Mode) Course: Chemical Reaction Engineering Semester: VIII Program: B. Tech APE GAS Time $: \mathbf{0 3}$ hrs. Course Code: CHEG 333 Max. Marks: $\mathbf{1 0 0}$ Instructions:			
Each Question will carry 5 Marks \quad SECTION A			
S. No.		Marks	CO
Q 1	A first order reaction is to be treated in a series of two mixed reactors. The total volume of the two reactors is a) Minimum when the reactors are of different sizes b) Maximum when the reactors are equal in size c) Minimum when the reactors are equal in size	5	CO5
Q2	For identical feed compositions, flow rate and for elementary first order reactions, N equal size mixed reactors in series with a total volume V gives the same conversion as a single plug flow reactor of volume V for constant density systems. This is true for a) $\mathrm{N}=1$ b) $\mathrm{N}=\infty$ c) $\mathrm{N}>1$ d) $\mathrm{N}<1$	5	CO5
Q3	For the irreversible unimolecular type reaction, A ---- products in a batch reactor, 80% reactant $\mathrm{A}\left(\mathrm{C}_{\mathrm{A} 0}=1 \mathrm{~mole} / \mathrm{lit}\right)$ is converted in a 480 second run and conversion is 90% after 18 min . The order of this reaction is a) 1 b) 2 c) $1 / 2$ d) $3 / 2$	5	CO1
Q4	Suppose doubling the concentration of a reactant increased the rate of reaction by a factor of 4 , and tripling the concentration of the reactant increases the reaction rate by a factor of 9 . Then the rate of reaction is proportional to the concentration of the reactant raised to the a) First power b) Second power c) Third power d) Fourth power	5	CO2
Q5	For a steady state mixed reactor, the space time is equivalent to the holding time for a) Constant fluid density systems b) Variable fluid density systems c) Non isothermal gas reactions d) Gas reactions with changing number of moles.	5	CO 3

Q6	One liter per second of gaseous reactant A is introduced into a mixed reactor. The stoichiometry is A ----- 3 R , the conversion is 50% and under these conditions the leaving flow rate is 2 liters per second. The space time for this operation is a) 1 sec b) $1 / 2 \mathrm{sec}$ c) 2 sec d) $1 / 3 \mathrm{sec}$	5	CO4
	SECTION B		
Each question will carry 10 marks			
Q 7	A 10-minute experimental run shows that 75% of liquid reactant is converted to product by a $1 / 2$ order rate. What would be the fraction converted in a half-hour run?	10	CO1
Q8	For irreversible first order series reaction A- \qquad S, the value of rate constants k_{1} and k_{2} are $0.17(\mathrm{~min})^{-1}$ and $0.11(\mathrm{~min})^{-1}$ respectively. Calculate (i) the time at which the concentration of R is maximum and (ii) maximum concentration of R . Take $\mathrm{C}_{\mathrm{A} 0}=$ $1.25 \mathrm{~mol} / \mathrm{l}$.	10	CO2
Q9	Consider a feed with $\mathrm{C}_{\mathrm{A} 0}=100, \mathrm{C}_{\mathrm{B} 0}=200$ and $\mathrm{C}_{\mathrm{i} 0}=100$ enters a steady flow reactor in which isothermal gas phase reaction $A+3 B----6 R$ takes place. Determine C_{B}, $\mathrm{X}_{\mathrm{B}}, \mathrm{X}_{\mathrm{A}}$ at the exit of the reactor if C_{A} at exit is 40	10	$\mathrm{CO3}$
Q10	An aqueous feed of A and B ($400 \mathrm{liter} / \mathrm{min}, 100 \mathrm{mmol} \mathrm{A} / \mathrm{liter}, 200 \mathrm{mmol} \mathrm{B} / \mathrm{liter}$) is to be converted to product in a plug flow reactor. The kinetics of the reaction is represented by mol A+B---- R, $-r_{A}=200 \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{B}} \mathrm{mol} /$ liter .min Find the volume of reactor needed for 99.9% conversion of A to product.	10	CO4
Q11	Liquid reactant A decomposes as per reaction scheme: With rate equations: $\begin{aligned} & \mathrm{r}_{\mathrm{R}}=\mathrm{k}_{1} C_{A}^{2}, \quad \mathrm{~K}_{1}=0.4 \mathrm{~m}^{3} /(\mathrm{mol} . \mathrm{Min}) \\ & \mathrm{r}_{\mathrm{S}}=\mathrm{K}_{2} \mathrm{C}_{\mathrm{A}}, \quad \mathrm{~K}_{2}=2(\mathrm{~min})^{-1} \end{aligned}$ An aqueous feed $\mathrm{A}(\mathrm{CA} 0=40 \mathrm{~mol} / \mathrm{m} 3)$ enters a reactor, decomposes, and a mixture of A, R, and S leaves Find C_{R}, and C_{S} and τ for $X_{A}=0.9$ in a mixed flow reactor. OR Find C_{R}, and C_{S} and τ for $X_{A}=0.9$ in a plug flow reactor.	10	CO5
Each Question carries 20 Marks.			
Q 12	It is desired to produce $4000 \mathrm{kmol} /$ day of ethylene glycol. The reactor is operated isothermally. A $16.05 \mathrm{kmol} / \mathrm{m} 3$ solution of ethylene oxide in water is fed to the CSTR	20	CO5

together with an equal volumetric solution of water containing 90% by weight $\mathrm{H}_{2} \mathrm{SO}_{4}$. If 80% conversion is to be achieved, find the volume of reactor. How many CSTRs, each having volume 3 m 3 , would be required to if they are arranged in parallel? What is the corresponding conversion? How many CSTRs each having volume 3 m 3 would be required to if they are arranged in series? What is the corresponding conversion? The first order reaction rate constant is 0.311 (min)-1.

OR
The elementary irreversible aqueous-phase reaction $A+B----R+S$ is carried out isothermally as follows. Equal volumetric flow rates of two liquid streams are introduced into a 4-liter mixing tank. One stream contains $0.020 \mathrm{~mol} \mathrm{~A} / l i t e r$, the other $1.400 \mathrm{~mol} \mathrm{~B} /$ liter. The mixed stream is then passed through a 16 -liter plug flow reactor. We find that some R is formed in the mixing tank, its concentration being 0.002 $\mathrm{mol} / \mathrm{liter}$. Assuming that the mixing tank acts as a mixed flow reactor, find the concentration of R at the exit of the plug flow reactor as well as the fraction of initial A that has been converted in the system.

