Name:

Enrolment No:

Semester: VII Time 03 hrs.

Max. Marks: 100

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, December 2020

Course: Finite Element Method

Program: B. Tech ASE

Course Code: ASEG 4003

Instructions: a) All questions are compulsory.

b) Assume any suitable value for missing data

SECTION A

- 1 .Each Question will carry 5 Marks and has sub-questions
- 2. Q1-Q5 are objective and true/false
- 3. Q6 is short answer type

S. No.		Marks	CO
Q 1	 i) The determinant of an element stiffness matrix is always (2 M) a) one b) zero c) depends on size of [K] d) Two ii) In below choose which is the correct condition for axisymmetric element (2 M) a) Symmetric about axis b) Boundary conditions are symmetric about axis c) Loading conditions are symmetric about axis d) All the above iii) The diagonal element of stiffness matrix is always positive (T/F) (1 M) 		CO1
Q2.	 i) The sum of the derivative of shape function for an element in FEM is (2 M) a) 0 b) 1 c) 2 d) Infinite ii) The value of the Kronecker delta function : δ_{ij}δ_{ij} is (2 M) a) 1 b) 0 c) 3 d) Infinite 	5	CO1

	iii) Every continuous system has infinite degree of freedom (T/F) (1 M)		
Q3	 i) A sphere under diametral compression is an example of (2 M) a) Plane stress b) Plane strain c) Axisymmetric d) None of the above 		
	ii) The size of [B] matrix for a 2D quad non-linear element is (2 M)		
	a) 2 x 16 b) 1 x 18 c) 3 x 16 d) 2 x 18	5	C01
	iii) Symmetry of stress tensor is derived from moment equilibrium (T/F) (1M)		
Q4.	i) Which of the following is NOT true for FEM (2 M)		
	 a) FEM is an approximate method b) Equilibrium equation are derived at nodes c) Shape function has the property similar to Kronecker delta function d) The origin of natural coordinate system in a 2D isoperimetric formulation is at the corner node of an element 		
	ii) The total potential energy of an elastic body is defined as (2 M)		
	a) Strain energy - Work potential	5	CO1
	b) Strain energy + Work potential		
	c) Strain energy + Kinetic energy - Work potential		
	d) Strain energy + Kinetic energy + Work potentia		
	iii) The conductive matrix for an element is symmetric while convective not (T/F) (1 M)		
Q5	 i) Reduction of any 3D problem to 2D depends on (2 M) a) Nature of loading b) Geometry type c) Material behaviour 	5	CO1

	d) All of the above		
	ii) If a body is in equilibrium then its total potential energy is (2 M)		
	 a) 0 b) Maximum c) Minimum d) Vary with time 		
	iii) Shape function has the property of Kronecker delta function (T/F) (1 M)		
Q6	Briefly explain importance of (not more than two line) a) Shape function in FEM (2 M) b) Isoparametric formulation in FEM (3M)	5	CO2
	SECTION B		
Q 7	The state of stress at any point in the material is given by the below stress tensor $\sigma_{ij} = \begin{bmatrix} 18 & 0 & 24 \\ 0 & -50 & 0 \\ 24 & 0 & 32 \end{bmatrix}$ Determine a) Principal stresses (3M) b) Deviotoric stress (2M) c) Von-mises stress (2 M) d) Traction vector at the plane whose direction cosines are $(1/\sqrt{2}, 1/\sqrt{2}, 0)$ (3M)	10	CO3
Q8.	The <i>ij</i> th the element of the stiffness matrix [K] of a 2 d element is given by $\int_{-1}^{1} \int_{-1}^{1} \zeta^2 \eta^2 d\zeta d\eta$ Evaluate the above integral using 3 point Gauss quadrature rule. Use below table for your refrenece.	10	CO4

Q11.	a) Why displacen problem in FE	nents are primary unknown (not load M (5 M)	or stress or strain) for structure	² 10	CO3
Q10.	Natural Coordinate a) Shape fund b) [B] matrix c) Element st Note: Refer table	etion (3 M) (Derivative of shape function matrix iffness matrix (use 2 point Gauss qua n Q8 for more information	x) (2M) adrature rule) (5 M)	10	CO4
Q9.	Determine the dispreaction force. Following information $K = \int_{v} B^{T} D$ Surface force	cts an assembly of two bar elements in placements at mid of each bar, eleme $A_1, E_1, L_1 \qquad A_2, E_2, L_2$ $A_1 = 40 \text{ cm}^2 \qquad A_2 = 20 \text{ cm}^2$ $E_2 = 70 \text{ GPa}$ $L_2 = 10 \text{ cm}$ ations are there for your refrence. Bdv e vector, $r_s = \int_s N^T t ds$ ector, $r_b = \int_v N^T b dv$	ant stresses, and the 200 KN	10	CO3
	1 2 3 4	$x_1 = 0.000$ $x_1, x_2 = \pm 0.57735026918962$ $x_1, x_3 = \pm 0.77459666924148$ $x_2 = 0.000$ $x_1, x_4 = \pm 0.8611363116$ $x_2, x_3 = \pm 0.3399810436$	2.000 1.000 $\frac{5}{9} = 0.555$ $\frac{8}{9} = 0.888$ 0.3478548451 0.6521451549		
	Number of Points	Locations, x_i	Associated Weights, W_i		

	b) What do you mean by convergence in FEM, state the difference between h and p method of convergence. (5 M)		
	SECTION-C		
Q12	Consider the circular heat transfer pin shown in Figure below. The base of the pin is held at constant temperature of 100 0 C (i.e., boiling water). The tip of the pin and its lateral surfaces undergo convection to a fluid at ambient temperature Ta. The convection coefficients for tip and lateral surfaces are equal. Given $Kx = 380$ W/m- 0 C, L = 8 cm, h = 2500 W/m ² - 0 C, d = 2 cm, Ta = 30 0 C. Use a two element finite element model with linear interpolation functions (i.e., a two-node element) to determine the nodal temperatures and the heat removal rate from the pin. Assume no internal heat generation		
	100° C h, T_a $L \longrightarrow h, T_a$		
	Use bleow quatities to solve this problem, $K_{c} = \int_{V} B^{T} DB dv$ $K_{h} = \int_{s} h N^{T} N ds$ $f_{Q} = \int_{v} N^{T} Q dv$	20	CO5
	$f_q = \int_s N^T q ds$ $f_h = \int_s N^T h T_\infty ds$		
	$f_h = \int_s N^T h T_\infty ds$		