Name: Enrolment No:	Roll No.	
•	UNIVERSITY OF PETROLEUM AND EN	ERGY STUDIES
	End Semester/ Supplementary Examination	n, December 2020
Course: Automotive Ex	ngine Component Design	Semester: VIIth Sem
Program: B.Tech. Auto	motive Design Engineering	Time 180 Minute
Course Code: MEAD40	01/ ADEG431	Max. Marks: 100
Instructions:		
1. Assume the suitable dat	a and mention in solution at start.	
2. Draw the necessary diag	grams.	
3. Chapter of DDHB are p	pasted for use in Q. No. 2 of Section A & B at the	e end of QP.

Note:

1. Read the instruction carefully before attempting.

3. There are total of 4 questions in Section A /B of scan and upload type.

3. Examination_will be conducted online on CODETANTRA platform.

4. Write the answer over A4 sheet and mention clearly the page number at the top. After the completion, scan and upload online through CODETANTRA platform.

S. No.	Statement of question	Marks	СО
	SECTION A		
	Attempt all the questions		
Q 1	 Write the answer in brief. (a) Compare the materials used for engine piston with their characteristics. (b) Differentiate between static and dynamic balancing. Discuss the points to be considered to obtain the firing order of a multi-cylinder engine. (c) Differentiate between the centre crank shaft and side crank shaft with help of diagrams. (d) Explain the controlling force diagram of Governor with its significance. 	20	CO1

Q 2	The following data is given for a four-stroke diesel engine:		
	Cylinder bore = 100 mm Length of stroke = 125 mm Speed = 2000 rpm Brake mean effective pressure = 0.65 MPa Maximum gas pressure = 5 MPa Fuel consumption = 0.25 kg per BP per hr Higher calorific value of fuel = 45000 kJ/kg Assume that 5% of the total heat developed in the cylinder is transmitted by the piston. The piston is made of grey cast iron and the permissible tensile stress is 37.5 N/mm ² (k = 46.6 W/m/°C). The temperature difference between the Centre and edge of the piston head is 220°C. Bearing pressure at small end of connecting rod = 25 MPa Allowable bending stress for piston pin= 140 N/mm ² Number of piston rings = 4. Design the piston completely. Assume the data required if not provided.	20	CO2
	SCTION B		<u> </u>
Q 1(a)	Attempt all questions. A governor of the Hartnell type has two balls, each ball of weight 15 N and the lengths of vertical and horizontal arms of the bell crank lever are 120 mm and 60 mm, respectively. The fulcrum of the bell crank lever is at a distance of 100 mm from the axis of rotation. The maximum and minimum radii of rotation of the balls are 120 mm and 80 mm and the corresponding equilibrium speeds are 325 and 300 rpm, respectively. Find the stiffness of the spring and the equilibrium speed when the radius of rotation is 100 mm.	10	CO4
Q 1(b)	 The turning moment exerted on crankshaft of 2 stroke engine is given by T= 10000+1000 sin 2θ -3000 cos 2θ Where θ is inclination of crank to inner dead centre. The flywheel has mass of 600 kg with radius of gyration of 800 mm . The engine rotates at 360 rpm. Draw the turning moment diagram and determine ; (i) Power developed (ii) Fluctuation of speed 	20	CO4
Q 2 (a)	 (iii) Maximum acceleration of flywheel Four masses 150, 250, 200 and 300 kg are rotating in the same plane at radii of 0.25, 0.2, 0.3 and 0.35 m, respectively. Their angular location is 40°, 120° and 250° from mass 150 kg, respectively, measured in counter-clockwise direction. Find the position and magnitude of the balance mass required, if its radius of rotation is 0.25 m. Solve by using graphical method. 	10	CO3

Q 2(b)	Data is given or the Centre crankshaft of a single				
	Cylinder bore	=	150mm		
	L/r ratio	=	4.75		
	Maximum gas pressure	=	4 MPa		
	Length of stroke	=	200 mm		
	Total belt pull	=	1.8 kN		
	Weight of the flywheel cum belt pulley	=	3.5kN		
	Allowable bending stress	=	80 N/mm ²	20	CO3
	Allowable compressive stress	=	80 N/mm ²	-0	
	Allowable shear stress	=	40 N/mm ²		
	Allowable bearing pressure	=	10 MPa		
	The main bearings are 400 mm apart and the thir main bearing on its side. The belts are in horizont the piston is at top dead center position . Assu crank shaft	al direc	ction. Consider the case when		

Use the following chapters of DDHB for design problems as required.

Cylinders and Pistons of Steam and Internal Combustion Engines

manded a conserver a linguity areas in a conserver conserver

Symbols	Description and Units	
F _p	the maximum load on the piston, N (kgf)	
h	the depth of the piston ring, mm	
i	number of studs or bolts	
L	length of the piston, mm	8
L_c	length of cylinder, mm	
<i>l</i> ₁ .	length of the gudgeon pin bearing, mm	
n	speed of the engine, rev/s	
p	working pressure, MN/m ² (kgf/mm ²)	
p _m	actual mean effective pressure, MN/m ² (kgf/mm ²)	
t	thickness of the cylinder, mm	
t_f	thickness of the cylinder flange, mm	
t_1	thickness of the piston head, mm	
tr	the radial thickness of the piston ring, mm	
ν	mean speed of the piston, m/s (Table 18.1)	
W_R	weight of the reciprocating parts, N (kg)	
σ_t	allowable stress, MN/m ² (kgf/mm ²)	

Particular	Equation	Eqn.	No.
Steam Engine Cylinder:			
The diameter of a double acting eninge (steam engine)	$D = \left[\frac{1000(P)}{(\pi/4)p_m v}\right]^{\overline{2}} \text{ SI units}$		18.1(a)
	L Trees 12 and Barrish	1 1 81	
	$D = \left[\frac{75(P)}{(\pi/4)p_m v}\right]^{\frac{1}{2}}$ Metric units	1	8.1(b)

Particular	Equation	Eqn.	No.
Diameter of piston Rod:			
The diameter of piston rod	$d = D\sqrt{p/\sigma_d}$		18.11

where p = unbalance pressure or difference between the steam inlet and the exhaust pressure, MN/m² (kgf/mm²)

 σ_d = allowable stress in the piston rod, (in calculating σ_d , take the

factor of safety 10 for double acting engines and 8 for single acting engines on the ultimate strength)

The inertia force of the reciprocating parts on the piston, N (kgf) $F = 0.004032rn^2 W_R \left(\cos\theta \pm \frac{\cos 2\theta}{n_1}\right)$ 18.12

where r = crank radius, mm; W_R is the weight of reciprocating parts, N(kgf)

l =length of the connecting rod, mm; $n_1 = l/r$

 θ = crank angle from the dead centre, positive sign is to be taken from inner dead centre while the negative sign from outer dead centre

Trunk Pistons:

The thickness of piston head (Table 18.4)

$$t_1 = 0.43D \sqrt{p/\sigma_d}$$
 18.13(a)

where p is the fluid pressure, MN/m^2 (kgf/mm²); D is the diameter of piston, mm

 σ_d = allowable tensile stress,

= 38 MN/m² (3.90 kgf/mm²) for good close grained cast iron or aluminium

alloys, with ultimate tensile strength of 137.0 MN/m² (14 kgf/mm²)

= 55 MN/m² (5.6 kgf/mm²) for Nickel Cast iron, semi-steel or special aluminium

alloy having ultimate tensile strength of 206 MN/m² (21 kgf/mm²)

= 82.5 MN/m^2 (8.4 kgf/mm^2) for forged steel

An empirical formula to determine the thickness of the cast iron automobile engine piston head, mm

$$t_1 = 0.032D + 1.5$$
mm 18.13(b)

The thickness of the Crown from the consideration of heat flow, mm
$$t_1 = \frac{D^2 q}{1600K(T_c - T_e)}$$
 18.13(c)

Cylinders and Pistons of Steam and Internal Combustion Engines

Particular	Equation	Eqn.	No.
The diameter of the piston pin	$d = \frac{\pi D^2 p_{\text{max}}}{4l_1 p_b}$		8.15(a)
where $l_1 = k_p d$, length of the	$ 4l_1p_b$		0.12(1)
$k_n = 1.5$ for petrol and	guageon pin bearing, mm		
$n_p = horing$ resolution and	gas engines and 2 for oil engines		
p_b = bearing pressure	TANKAR DAL MART		
$= 12.4 \text{ MN/m}^2 (1.20)$	6 kgf/mm ²) for gas engines		
	4 kgf/mm ²) for oils engines		
$= 15.7 \text{ MN/m}^2 (1.60)$	0 kgf/mm ²) for automotive engines		
Another formula to determine the length of	$l_1 = 0.45D$ to 0.5D if it oscillates	1	8.15(b)
the gudgeon pin bearing	in the connecting rod		
To check the strength of the piston pin:	= 0.62D if it oscillates in the pin	ston boss	ses
	F_D		
	$\sigma_b = \frac{F_p D}{18Z}$		18.16
where σ_b = bending stress	408/ 202 032		
	f/mm ²) for case hardened carbon stee	el	
	kgf/mm ²) for heat-treated alloy steel		
F_p is the maximum load o			
Z is the section modulus,	, mm ³		
Proportions of the Piston Rings:	101 1251 2.865 132(3.861 34(3.40		
The radial thickness of the cast iron snap ring	$t_r = D \sqrt{3p_r}/\sigma$	1	8.17(a)
where σ = allowable stress for Cast iron	Table 18.3 Coefficients in F.		
= 82.0 to 110 MN/m ² (8.4 to 11.2			
p_r = magnitude of radial pressure on			
	$h = 0.7t_r$ to t_r		8.17(b)
he minimum depth of the piston ring	h = D/10i	1. 1. 1. 1. 1.	8.17(c)
	where $i =$ number of piston rings		
he total depth of piston rings (according to Un	win)		
$h_{\text{total}} = D/15 + 15.2 \text{ mm}$ for steam engines		1	8.17(d)
= D/7 + 6 mm for gas and oil engines;	; and $h_{\text{total}} = D/5.5$ for petrol engine	es	
he distance from the top to the first groove	$t_g = t_1 \text{ to } 1.2t_1$		18.18
he lands between the ring grooves	$t_{\text{land}} = h \text{ or slightly less than } h$		18.19

Cylinders and Pistons of Steam and Internal Combustion Engines

Table 18.1 Coefficients for Determining Head Thickness (Fig 18.5)

Type of Head in Fig. 18.5	Coefficient	Remarks		
A or A'	0.162	Plate rigidly riveted or bolted to the shell flange.		
B	0.162	Integral flat head; $D_1 \leq 600 \text{ mm}$; $t \geq 0.05 D_1$.		
C	0.30	Flanged plate attached by a lap joint; $r \ge 3t$.		
D or E	0.25	Plate butt-welded or forged integral; $r \ge 3t_f$.		
F	0.50	Plate fusion-welded with fillet weld; throat $t_1 \ge 1.25t_s$.		
G or H	0.30 + K	Bolts tend to dish the plate; K is found by the relation		
		$K = 1.4Wt_o/HD_1$, where $W =$ total bolt load in N;		
		H = total pressure on area bounded by the outside diameter of		
		the gasket, in pounds; and h_0 and d are as shown in Fig. 18.5.		

Table 18.2 Design Stresses for Bolted Flanged Heads

Maximum Temperature (Deg C)	Flange Material at Room Temperature N/mm ² (kgf/mm ²)										
	310 345 380 415 485										
370	74(7.55)	82(8.36)	90(9.18)	115(11.73)	98(10.00)						
400	65(6.63)	72(7.34)	80(8.16)	87(8.87)	101(10.30)	87(8.87)					
425	56(5.71)	62(6.32)	68(6.93)	75(7.65)	87(8.87)	75(7.65)					
450	47(4.80)	52(5.30)	57(5.81)	62(6.32)	73(7.44)	62(6.32)					
480	37(3.77)	42(4.28)	46(4.70)	50(5.10)	58(5.91)	50(5.10)					
510	28(2.86)	32(3.26)	34(3.47)	37(3.77)	44(4.50)	37(3.77)					

Table 18.3 Coefficients in Formulas for Cover Plates

Material of Cover Plate	Method of Holding Edges	Circular Plate		Rectangular Plate		Elliptical Plate
	3.62	<i>k</i> ₁	<i>k</i> ₂	<i>k</i> ₃	<i>k</i> ₄	k ₅
Cast iron	Supported, free	0.54	0.038	0.75	1.73	1.5
in the second	Fixed	0.44	0.010	0.62	1.4; 1.6*	1.2
Mild steel	Supported, free	0.42		0.60	1.38	1.2
* WE41	Fixed	0.35		0.49	1.12; 1.28	0.9

* With gasket.

Table 18.4 Thickness of Piston Head

Type of Engine	Piston Material	Four Stroke	The Or 1
Compression-ignition oil engines -do- Spark ignition gas engines	Cast iron Aluminium Cast iron	0.11D - 0.13D 0.13D - 0.16D	Two Stroke 0.16D - 0.18D 0.17D - 0.20D 0.20D - 0.23D

Cylinders and Pistons of Steam and Internal Combustion Engines

Table 18.5 Recommended Piston Speed				
Class of Engine	Speed of Piston in m/s			
Ordinary direct-acting pumping engines	. 0.45 - 0.65			

Table 18.5 Recommended Piston Sneed

Ordinary horizontal engines			1.00 - 2.00
Horizontal compound and Triple-e	expansion er	ines	2.00 - 4.00
Ordinary marine engines			2.00 - 3.25
Locomotive engines (mail)			4.00 - 5.00
Internal combustion engine			3.25 - 18.00

Class of Engine		Ratio	on, L_s/D	
Ordinary horizontal mill engines			1.50	to 2.00
Vertical quick-running engines			1.25	to 1.60
Locomotive engines			1.20	to 1.55
Internal combustion engines			0.90	to 1.90
Air-cooled air-craft engines			1.00	1.15

Table 18.6 Stroke-Bore Ratio

Table 18.7 Values of Inertia Factor ($\cos \theta + \cos 2\theta/n_1$)

Crank Angle θ	Ratio of connecting rod length to crank length,					, <i>l/r</i>
from Top Dead Centre	3.75	4.0	4.25	4.50	4.75	5.30
0	1.267	1.253	1.235	1.222	1.210	1.200
10	1.236	1.219	1.206	1.194	1.183	1.175
20	1.144	1.131	1.120	1.110	1.101	1.093
30	0.999	0.991	0.984	0.977	0.971	0.96
40	0.812	0.809	0.807	0.804	0.803	0.80
50	0.597	0.599	0.602	0.604	0.606	0.60
60	0.367	0.375	0.382	0.389	0.395	0.40
70	0.138	0.150	0.162	0.172	0.181	0.18
80	-0.077	-0.061	-0.047	-0.350	-0.024	-0.01
90	-0.267	-0.250	-0.235	-0.222	-0.210	-0.20
100	-0.425	-0.408	-0.395	-0.382	-0.372	-0.36
110	-0.546	-0.543	-0.522	-0.512	-0.512	-0.49
120	-0.633	-0.625	-0.618	-0.611	-0.605	-0.60
130	-0.689	-0.686	-0.684	-0.681	-0.679	-0.6
140	-0.723	-0.723	-0.725	-0.727	-0.729	-0.7
150	-0.733	-0.741	-0.748	-0.755	-0.761	-0.7
160	-0.733	-0.748	-0.760	-0.769	-0.779	-0.7
170	-0.733	-0.750	-0.764	-0.776	-0.787	-0.7
180	-0.733	-0.750	-0.765	-0.778	-0.790	-0.8

		Weight W/A, MN/	ght W/A, MN/m ^{2*} of Piston Area		
		Spark Ignition	Compression Ignition		
Single Acting Engine					
Air-craft		$1.50 \times 10^{-3} - 2.75 \times 10^{-3}$	$2.06 \times 10^{-3} - 3.10 \times 10^{-3}$		
Automobile		$2.06 \times 10^{-3} - 3.40 \times 10^{-3}$	-		
Truck and tractor		$2.40 \times 10^{-3} - 5.15 \times 10^{-3}$	$2.40 \times 10^{-3} - 5.15 \times 10^{-3}$		
Medium speed stationary		$10.30 \times 10^{-3} - 27.50 \times 10^{-3}$	$10.30 \times 10^{-3} - 30.90 \times 10^{-3}$		

Table 18.8 Weights of Reciprocating Parts

*Values in Metric units (kgf/mm² of piston area) can be obtained by dividing the given values with 9.8067

Table 18.9 Magnitude of Radial Pressure of the Piston Rings on the CylinderBarrel (according to Unwin)

Type of engine	Steam Engin		am Engines Gas or Oil		Engines Gas or Oil		Petrol
-spe of engine =	H.p.	I.P.	L.P.	engines	engines		
$p_r MN/m^2$	0.02746	0.02060	0.01372	0.02402-0.03090	0.02746-0.03432		
(kgf/mm ²)	(0.0028)	(0.0021)	(0.0014)	(0.00245-0.00315)	(0.0028-0.0035)		

References

- [1] Bhattacharya, S. C., Basu Mallik, J. R., "Machine Design", Basu Mallik & Co., Calcutta, 1966.
- [2] Vallance, A., Doughtle, V. L., "Design of Machine Members", 3rd edition, McGraw Hill Book Company, 1951.

Symbols	Description and Units
с	distance from neutral axis to outer most fiber, mm
C_m, C_t	the numerical combined shock and fatigue factors to be applied to the computed bending moment and torsional moment respectively (Table 3.1)
d	diameter of solid shaft, mm (Table 3.5)
d_i, d_0	inside and outside diameters of the hollow shaft respectively, mm
F _c	Force on the connecting rod, N (kgf)
F _p	Force on the piston, N (kgf)
Fr	radial force along the crank, N (kgf)
F _t	tangential force perpendicular to the crank, N (kgf)
J	polar moment of inertia of cross-sectional area about axis of rotation, mm ⁴
K	ratio of inside to outside diameter of hollow shaft
L	length of the shaft, mm
М	bending moment, N mm (kgf-mm)
n	speed of the shaft, rpm
Р	power, kW
P _{bc}	allowable crank pin bearing pressure, MN/m ² (kgf/mm ²) (Table 3.6)
p_{bs}	main bearing pressure, MN/m ² (kgf/mm ²) (Table 3.6)
Т	torsional moment, N mm (kgf-mm)
σ_b	stress due to bending, MN/m ² (kgf/mm ²)
σ_d	design stress, MN/m ² (kgf/mm ²) (Table 3.5(b))
σ_{e}	stress at the elastic limit, MN/m ² (kgf/mm ²)
τ	torsional shear stress, MN/m ² (kgf/mm ²)
τd	design shear stress, MN/m ² (kgf/mm ²) (Table 3.5(b))
τε	shear stress at the elastic limit, MN/m ² (kgf/mm ²)
ω	angular velocity, rad/s
θ	angle of twist, deg

-

	Eq	n. No.
Particular	Equation	
Torsion of circular shafts: The maximum torsional shear stress due to torsional loading	$\tau = \frac{Tc}{J} = \frac{16T}{\pi d^3} \text{ for solid shafts}$ $= \frac{16T}{\pi d_o^3} \left(\frac{1}{1 - K^4}\right) \text{ for hollow shafts}$	3.1
The angular deformation	$\theta = \frac{TL}{JG} \operatorname{rad} = \frac{584TL}{Gd^4} \operatorname{deg., \text{ for solid shaft}}$ $= \frac{584TL}{G(d_o^4 - d_i^4)} \operatorname{deg., \text{ for hollow shaft}}$	3.2 nafts
The torque to be transmitted by the shaft N-mm	$T = \frac{10^{6}P}{\omega}$ $T = \frac{9.55 \times 10^{6}(P)}{n}$ SI Units	3.3(a)
The torque transmitted by the shaft, kgf mm	$T = \frac{75 \times 10^{3} (MHP)}{\omega}$ $= \frac{7.16 \times 10^{5} (MHP)}{n}$ Metric Uni	3.3(b) ts
	$=\frac{9.74\times10^5(P)}{n}$	
Hollow shaft:* The outside diameter of hollow shaft subjected to simple torsion	$d_o = \left[\frac{16T}{\pi\tau_d} \left(\frac{1}{1-K^4}\right)\right]^{\frac{1}{3}}$	3.4(a)
Out side diameter of hollow shaft subjected to simple bending	$d_o = \left[\frac{32M}{\pi\sigma_d} \left(\frac{1}{1-K^4}\right)\right]^{\frac{1}{3}}$	3.4(b
	where $\tau_d = \frac{\tau_e B}{RK_s}$ and $\sigma_d = \frac{\sigma_e B}{RK_t}$	
The outside diameter of hollow shaft subjected to combined bending and torsion.	R is reliability factor Table 2.7 B is the size factor (Eqn. 2.9(b))	
a) According to maximum normal stress theory	$d_o = \left[\frac{16}{\pi\sigma_{\max}}\left(M + \sqrt{M^2 + T^2}\right) \times \left(\frac{1}{1 - K^4}\right)\right]^{\frac{1}{3}}$	3.5(
b) According to maximum shear stress theory	$d_o = \left[\frac{16}{\pi \tau_{max}} \left(\sqrt{M^2 + T^2}\right) \times \left(\frac{1}{1 - K^4}\right)\right]^{\frac{1}{3}}$	3.5(1

^{*}For solid shafts, substitute K = 0 and $d_0 = d$ in the above equaitons.

Particular	Equation	Eqn. No.
	Squation	Equ. No.

ASME Code for design of transmission shafting:

(a) According to maximum normal stress theory

$$d_o = \left[\frac{16}{\pi\sigma_{max}} \left(C_m M + \sqrt{(C_m M)^2 + (C_t T)^2}\right) \times \left(\frac{1}{1 - K^4}\right)\right]^{\frac{1}{3}}$$
 3.6(a)

(b) According to maximum shear stress theory

$$d_o = \left[\frac{16}{\pi \tau_{max}} \left(\sqrt{(C_m M)^2 + (C_t T)^2}\right) \times \left(\frac{1}{1 - K^4}\right)\right]^{\frac{1}{3}}$$
 3.6(b)

1 1 1 1

di strength factor or the inflo of sticogurof

For fluctuating loads:

(a) According to maximum normal stress theory

$$d_o = \left[\frac{16}{\pi\sigma_{max}} \left(\left(M_m + \frac{K_t \sigma_{yp}}{\sigma_{e_n}} M_a \right) + \sqrt{\left(M_m + \frac{K_t \sigma_{yp}}{\sigma_{e_n}} M_a \right)^2 + \left(T_m + \frac{K_s \sigma_{yp}}{\sigma_{e_n}} T_a \right)^2} \right) \times \left(\frac{1}{1 - K^4} \right) \right]^{\frac{1}{3}}$$
 3.7(a)

(b) According to maximum shear stress theory

$$d_o = \left[\frac{16}{\pi\tau_{max}} \left(\sqrt{\left(M_m + \frac{K_t \sigma_{yp}}{\sigma_{en}} M_a\right)^2 + \left(T_m + \frac{K_s \sigma_{yp}}{\sigma_{en}} T_a\right)^2}\right) \times \left(\frac{1}{1 - K^4}\right)\right]^{\frac{1}{3}}$$
 3.7(b)

(c) According to Mises Hencky theory

$$d_o = \left[\frac{16}{\pi\sigma_{\max}} \left(\sqrt{4M_m^2 + 3T_m^2} + \frac{K_t \sigma_{yp}}{\sigma_{en}} \sqrt{4M_a^2 + 3T_a^2}\right) \times \left(\frac{1}{1 - K^4}\right)\right]^{\frac{1}{3}}$$
 3.7(c)

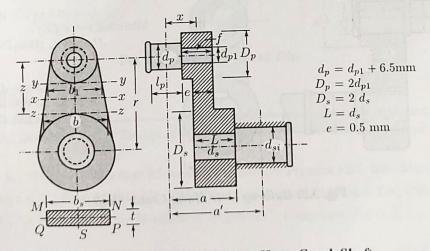
The out side diameter of hollow shaft subjected to an axial load F in addition to the torsional and bending loads.

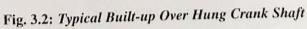
(a) According to the maximum normal stress theory

$$d_o = \left[\frac{16}{\pi\sigma_{max}} \left\{ \left(C_m M + \frac{\alpha F d_o (1+K^2)}{8} \right) + \sqrt{\left(C_m M + \frac{\alpha F d_o (1+K^2)}{8} \right)^2 + (C_t T)^2} \right\} \times \left(\frac{1}{1-K^4} \right) \right]^{\frac{1}{3}}$$
 3.8(a)

(b) According to maximum shear stress theory

$$d_o = \left[\frac{16}{\pi \tau_{max}} \left\{ \sqrt{\left(C_m M + \frac{\alpha F d_o (1 + K^2)}{8}\right)^2 + (C_t T)^2} \right\} \times \left(\frac{1}{1 - K^4}\right) \right]^{\frac{1}{3}}$$
 3.8(b)


		Equation	Eqn. No
Particular			19.23
where a	r = ratio of the maximum inte the axial load, to the avera	nsity of stress resulting from ge axial stress from Table 3.2	
	$=\frac{1}{1-0.0044(L/k)}$ when L/k	k < 115	
	$= \frac{\sigma_{yp}}{n\pi^2 E} (L/k)^2 \text{ when } L/k > 1$		
where L	is the length between supporti	ing bearings, mm	
k i	s the radius of gyration of the	shaft, mm	
σ_y	$_p$ is the yield stress in compre	ssion, MN/m ² (kgf/mm ²)	
E	is the modulus of elasticity, N	$1N/m^2 (kgf/mm^2)$	
n = c	constant for the type of colum	n end support,	
= 1	1.0, for free end supports or h	inged ends	
= 2	2.25, for fixed ends		
=]	.60, for both ends pinned, gu	ided and partly restrained	
The relation betwee shaft to a hollow s strengths are equal	een the diameter of a solid haft if their torsional	$d_o^3 = \frac{d^3}{1 - K^4}$	3.
shaft strength facto	ys: ula for determining the or or the ratio of strength of to the same shaft without	$K_e = 1.0 - \frac{0.2b}{d} - \frac{1.1h}{d}$	3.1
	or determining the ratio of f the shaft with the key way	$K_e = 1.0 + 0.4 \frac{b}{d} + 0.7 \frac{h}{d}$	3.1
to the same shaft w Crank Shaft:	rithout keyway	where b and h are width and depth of	keyway, mr
Forces on crank arr	n. (Fig. 3.1)		
The force on the co		$F_c = \frac{F_p}{\cos\phi}$	3.12(a
The tangential force he crank	e or the rotative effort on	$F_t = F_c \sin(\theta + \phi) = F_p \frac{\sin(\theta + \phi)}{\cos \phi}$	3.12(b
The radial force alo	ng the crank	$F_r = F_c \cos(\theta + \phi) = F_p \frac{\cos(\theta + \phi)}{1 - \cos$	3.12(c
The diameter of the Fig. 3.2)	crank pin at the root	$F_r = F_c \cos(\theta + \phi) = F_p \frac{\cos(\theta + \phi)}{\cos \phi}$ $d_{p1} = \sqrt[4]{\frac{16F_c^2}{\pi p_{bc}\sigma_b}}$	3.13(a
he diameter of the	crank pin or journal	$d_p = (d_{p1})$ to $(d_{p1} + 6.5$ mm)	-
		$u_p = (u_{p1})$ to $(d_{p1} + 6.5 \text{mm})$	3.13(b


Particular	Equation	Eqn. No.
The length of the crank pin	$l_p = \frac{F_c}{d_{p1}p_{bc}}$	3.14
The diameter of the crank shaft at the root	$l_p = \frac{F_c}{d_{p1}p_{bc}}$ $d_s = \sqrt[3]{\frac{16F_cr}{\pi\tau_d}}$	3.15(a)
The diameter of the crank shaft or journal	$(d_{s1}) = d_s \text{ to } (d_s + 6.5 \text{mm})$	3.15(b)
The length of the main bearing	$l_s = \frac{1.2F_t}{d_s p_{bs}}$	3.15(c)
The diameter of the crank pin according to American Bureau of shipping method (Fig. 3.3)	$d_p = a \sqrt[3]{\frac{D^2 pc}{\sigma_d}}$	3.16
where <i>a</i> is the coefficient from <i>D</i> is the diameter of cyli		

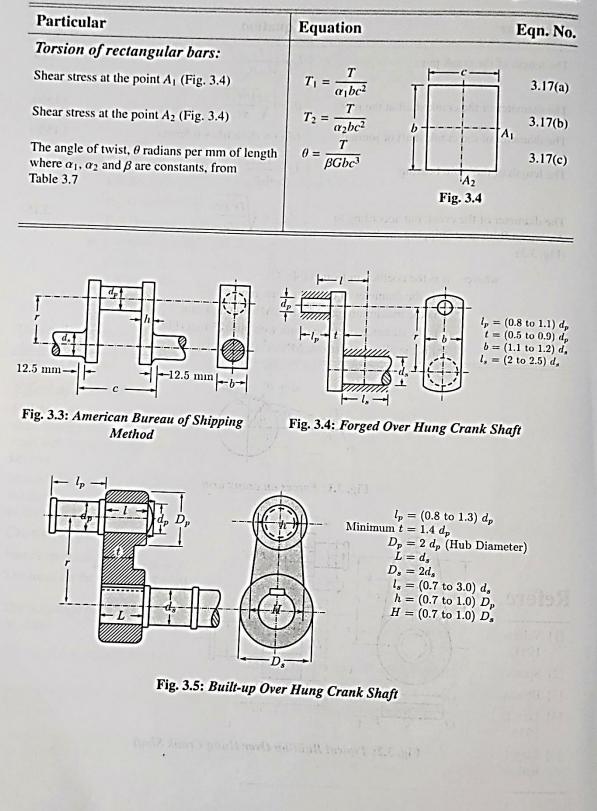

D is the diameter of cylinder bore, mm *p* is the maximum gas pressure, MN/m² (kgf/mm²) *c* is the distance over the crank web plus 25 mm (Fig. 3.3) σ_d is the allowable stress, MN/m² (kgf/mm²)

Fig. 3.1: Forces on crank arm

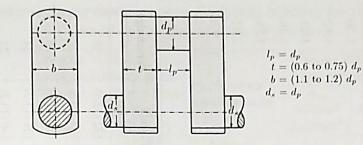


Fig. 3.6: Forged Centre Crank

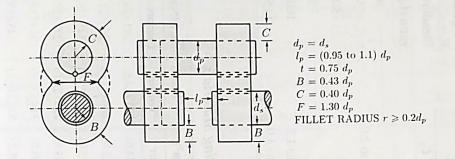


Fig. 3.7: Buit-up Centre Crank Shaft

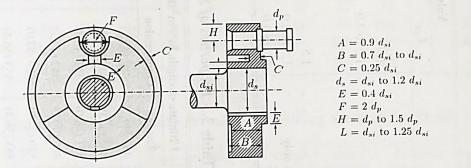


Fig. 3.8: Cast Iron Crank Disc

References

- [1] Vallance A., Doughtie V. L., "Design of Machine Members", 3rd edition, McGraw Hill Book Co. 1951.
- [2] Spotts M. E., "Design of Machine Elements", 3rd edition, Prentice Hall, Inc., Maruzen Co., Ltd.
- [3] Bhattacharya S. C., Basu Mallik, J.R., "Machine Design", basu Mallik & Co., Calcutta, 1966
- [4] Low D. A., "A Pocket Book for Mechanical Engineers", Longmans, Freen & Co., Ltd., London, 1955.
- [5] Siegel M. J., Maleev V. L., Hartman J. B., "Mechanical Design of Machines", 4th edition, International Text Book Company, 1965.

							The second of a to use in	to use in
Nature	Nature of Loading			Value for		Equation	Equation 3.8(a) and 3.8(b)	d 3.8(b)
Stationary Shafts :	-		C ^m	C'		Slenderness	s	Factor
Gradually applied load Suddenly applied load		:	1.0	1.0		ratio (L/k)		a
Rotating Shafts :		•	1.5 to 2.0	0 1.5 to 2.0	0.1	25		1.12
Steady or gradually applied loads	olied loads		1.5	0		50 75		1.28
upplied loads upplied loads,	Suddenly applied loads, minor shocks only Suddenly applied loads, heavy shocks	s only			S	100		1.49
			2.0 10 3.0	1.5 to 3.0	0	115		2.02
	IPA)	Table 3.3	Table 3.3 Properties of Shafting Materials	f Shafting	Materials	Peda		
	Percentage	Ultimate s	Ultimate strength, MN/m ² (kgf/mm ²)	^t (kgf/mm ²)	Flactic	limit MML 2 2		
wi C	carbon	Tension	Compression	10	TIASHIC	Date of the second seco	(gf/mm ²)	Percentage
Commercial Cold rolled	0.10-0.25	487 (40 7)	Holesarduna	onear	Tension	Compression	Shear	Elongation
Commercial turned	0.10-0.25	412 (42 0)	412 (49.2)	241 (24.6)	X	241 (24.6)	122 (12.5)	35
•	(0.15-0.25	(0.21) 211 A51 (A6 0)	412 (42.0)	206 (21.0)	206 (21.0)	206 (21.0)	103 (10.5)	35
Hot rolled or forged	0.25-0.35	(0.04) 104	(0.04) 1 (46.0)	225 (23.0)	245 (25.0)	245 (25.0)	113 (11.5)	26
	0.35 0.45	(7.64) 204	482 (49.2)	241 (24.6)	275 (28.0)	275 (28.0)	121 (12.3)	FC
As.	0.45-0.55	(0.5C) 02C	520 (53.0)	260 (26.5)	314 (32.0)	314 (32.0)	130 (13.2)	ន
900 : : ? : : ? :	0.15-0.25	(4.0c) ccc	500 (50.4)	276 (28.2)	345 (35.2)	345 (35.2)	138 (14.1)	20
N :	0.25-0.35	(0.00) 000	(0.0) 880	294 (30.0)	392 (39.0)	382 (39.0)	147 (15.0)	8
		020 (03.2)	620 (63.2)	310 (31.6)	414 (42.2)	414 (42.2)	155 (15 8)	35

ing from a l	Tensile strength,	Yield strength (Plastic defor-	and the second	Chrome N Heat treat	Distances of the	Medium Ca normalis	
Steel	MN/m ² (kgf/ mm ²)	mation 0.2%), MN/m ² (kgf/mm ²)	For reversed bending stress	σ_{en} MN/m ² (kgf/mm ²)	K _{tf}	$\sigma_{en} \over { m MN/m^2} \over ({ m kgf/mm^2})$	K _{tf}
	714.0	482.5	No Keyway	400.0		255.0	
Carbon Nickel	(72.8)	(49.2)	ordinary tapered	(40.0)		(26.0)	
		085015	specimen	Page Strategies			
(about SAE 3 140)			Sledrunner	248.0	1.61	193.0	1.32
(about SAL 5 140)	-	-	keyway	(25.3)		(19.7)	
			Profiled keyway	193.0	2.07	159.0	1.61
	17 - T.S.	Sugar lo u	DEFINE THE PARTY	(19.7)		(16.2)	
Medium Carbon			Profiled Keyway				
(about SAE 1045)	552.0	310.0	6.25mm		-	83.0	3.06
(about SAL 1045)	(56.3)	(31.6)	transverse hole		1.	(8.5)	

Table 3.4 Fatigue Stress concentration Factors in bending for shafts with keywaysbased on section modulus of full area

Table 3.5 (a) Standard shaft sizes in mm

6	8	10	12	14	16	18	20	22	25	28	32
36	10		50				80	90	100	110	125
	160	180	200	220	240		280	300	320	340	360
	400	420	440			500	530	560	600	-	-
380	400	420	440	150							and the second second

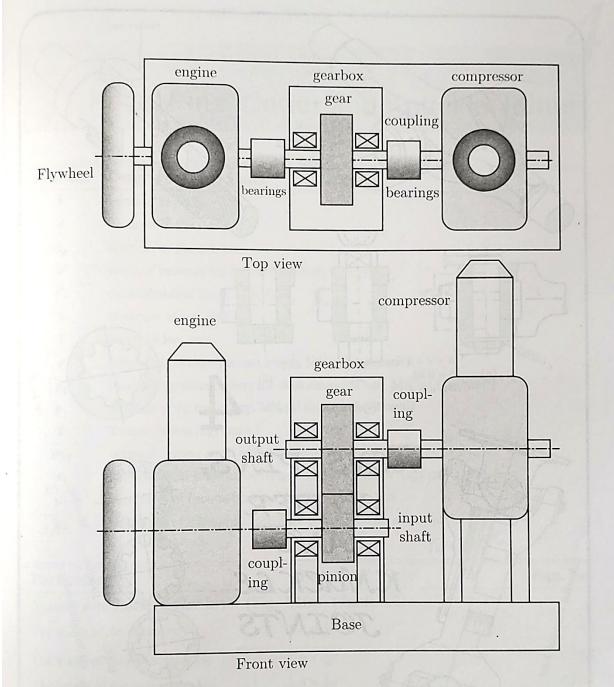
Table 3.5 (b) Maximum Permissible Working Stresses for Shafts

Grade of shafting	Simple bending	Simple torsion	Combined stress
	MN/m ² (kgf/mm ²)	MN/m ² (kgf/mm ²)	MN/m ² (kgf/mm ²)
"Commercial Steel" shafting without allowance for keyways	110 (11.2)	55(5.6)	55(5.6)
"Commercial Steel" shafting with allowance	83 (8.5)	41 (4.2)	41(4.2)
for keyways	60% of the elastic	30% of the elastic	30% of the elastic
Steel purchased under	limit but not over	limit but not over	limit but not over
definite specification	36% of the ultimate	18% of the ultimate	18% of the ultimate
(without keyways)*	in tension.	in tension.	in tension.

*The values are to be reduced by 25% if keyways are present.

Class of work	Main bearing pressure p_{bs} , MN/m ² (kgf/mm ²)	Crank pin pressure p_{bc} , MN/m ² (kgf/mm ²)
Automobile Engines	10.0—13.5 (1.0-1.40)	2.5—2.75 (0.25-0.28)
Diesel Engines	5.5—7.0 (0.56-0.70)	7.0—8.5 (0.70-0.85)
Marine Diesel Engines	2.75—3.5 (0.28-0.35)	7.0—10.0 (0.70-1.00)
Rail road, locomotive	1.2—1.4 (0.12-0.14)	10.0—12.0 (1.05-1.20)
Shear and punches, slow speed	20.5—27.5 (2.10-2.80)	34.0—54.0 (3.50-5.50)

Table 3.6 Allowable bearing pressure


Table 3.7 Constant for torsion of rectangular bars

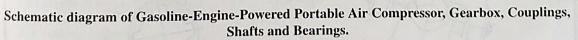

b/c	1.00	1.20	1.50	1.75	2.00	2.50	3.00
α_1	0.208	0.210	0.231	0.239	0.246	0.258	0.267
α_2	0.208	0.235	0.269	0.291	0.309	0.336	0.355
β	0.141	0.116	0.196	0.214	0.229	0.249	0.263
b/c	4.00	5.00	6.00	8.00	10.00	00	-
α_1	0.282	0.291	0.299	0.307	0.312	0.333	_
α_2	0.378	0.392	0.402	0.414	0.421	-	-
β	0.281	0.291	0.299	0.307	0.312	0.333	_

Table 3.8 Coefficien	'a' in the American Bu	reau of Shipping Formula 3.16
----------------------	------------------------	-------------------------------

Туре	Number o	f cylinder	Rati	Ratio of stroke to distance over crank webs = L/c								
Type	Four stroke	Two stroke	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4		
	1,2,4	1,2	1.17	1.17	1.17	1.17	1.17	1.17	1.17	1.1		
Explosion	3,5,6	3	1.17	1.17	1.17	1.17	1.19	1.20	1.22	1.24		
engines	8	4	1.17	1.19	1.21	1.23	1.25	1.28	1.30	1.3		
1	10,11,12	5,6	1.18	1.20	1.23	1.25	1.28	1.31	1.33	1.3		
	1,2,4	1,2	1.17	1.19	1.22	1.25	1.28	1.31	1.34	1.3		
Air-	3,5,6,	3	1.19	1.22	1.25	1.28	1.32	1.35	1.34	1.4		
njection	8	4	1.20	1.24	1.27	1.30	1.33	1.37	1.40	1.4		
diesel	12	5,6	1.22	1.25	1.29	1.32	1.36	1.37	1.40	1.4.		
engines	16	8	1.25	1.29	1.33	1.36	1.40	1.39	1.42	1.4.		

Note: Excerpted from Norton, Machine Design Pearson Education (Singapore) Pvt. Ltd., Delhi.