Name: Enrolment No:		1 UPES UNIVERSITY WITH A PURPOSE	
Course: \quad Flight Mechanics II Program: \quad B.Tech ASE/ASE+AVE Course Code: ASEG4001	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2020 Flight Mechanics II Sen B.Tech ASE/ASE+AVE Tim Code: ASEG4001 Ma ions: Assume the necessary data if not given. Use suitable plots wherever required.	Semester: VIIth Time 03 hrs. Max. Marks: 100	$\begin{aligned} & \text { IIth } \\ & 100 \end{aligned}$
SECTION A (6*5 = 30)			
S. No.		$\begin{gathered} \text { Mark } \\ \hline \mathbf{s} \\ \hline \end{gathered}$	CO
Q 1	Define the following terms. (a) Neutral point (b) Static margin.	5	CO1
Q 2	Graphically represent a system, which is statistically stable but dynamically unstable.	5	$\mathrm{CO1}$
Q 3	What do you understand by tail efficiency? How does it change with the location of tail surface?	5	CO2
Q 4	Define Stick-fixed maneuver point ($\mathbf{x}_{\text {mp }}$).	5	CO3
Q 5	Differentiate between yaw and sideslip angle.	5	CO4
Q 6	What is the purpose of a dorsal fin and how is it achieved?	5	CO4
SECTION B ($5 * 10=50$)			
Q 7	An airplane has the following characteristics. $\mathrm{C}_{\text {Law }}=0.080 \mathrm{deg}^{-1}, \mathrm{C}_{\mathrm{L} \alpha \mathrm{t}}=0.05 \mathrm{deg}^{-1}, \mathrm{dC}_{\mathrm{L}} / \mathrm{d} \delta \mathrm{e}=0.042, \mathrm{C}_{\text {hat }}=-0.004 \mathrm{deg}^{-1}, \mathrm{C}_{\mathrm{h} \delta \mathrm{t}}=-$ $0.005, \mathrm{i}_{\mathrm{w}}=0, \alpha_{0 \mathrm{~L}}=-2^{0}, \mathrm{i}_{\mathrm{t}}=-1^{0}, \varepsilon=0.5 \alpha, \mathrm{~S}_{\mathrm{t}}=0.25 \mathrm{~S}, \mathrm{l}_{\mathrm{t}}=3 \mathrm{c}, \mathrm{W} / \mathrm{S}=1500 \mathrm{~N} / \mathrm{m}^{2}$, a.c. location $=0.25 \mathrm{c}, \eta=1.0,\left(\mathrm{C}_{\mathrm{m} \alpha}\right)_{\mathrm{f}, \mathrm{n}, \mathrm{p}}=0.32 \mathrm{rad}^{-1}$. Obtain i) Stick-fixed neutral point ii) Stick-free neutral point	10	CO2
Q 8	Derive an expression for stick force gradient (dF/dV) and explain the requirement for proper stick force variation	10	CO2
Q 9	Answer the following. (a) Define the term maneuver point stick-fixed and maneuver point stick-free. (b) For a given value of C_{L} the elevator deflection required in pull-up is more than that in a steady level flight. Explain.	10	$\mathrm{CO3}$
Q 10	An airplane with the following characteristics is coming in to land at sea level at a speed of 1.2 times the stalling speed. What would be the amount of rudder deflection required ($\delta \mathrm{r}$) if the airplane encounters crosswind of $10 \mathrm{~m} / \mathrm{s}$?	10	CO4

	Additional parameters are given as, $\mathrm{W} / \mathrm{S}=1500 \mathrm{~N} / \mathrm{m}^{2}, \mathrm{~V}_{\mathrm{v}}=0.05, \mathrm{C}_{\mathrm{L} \alpha \mathrm{v}}=2.87 \mathrm{rad}^{-1}$, $\mathrm{C}_{\mathrm{n} \beta}=0.071 \mathrm{rad}^{-1}, \mathrm{C}_{\mathrm{Lmax}}=1.8, \eta_{\mathrm{v}}=1.0, \tau_{\text {rudder }}=0.5$. Or Explain how adverse yaw is brought about in an airplane. The wind tunnel tests on an airplane model indicate that full aileron deflection to right introduces an adverse yaw causing $\mathrm{Cn}=-0.008$. How many degrees of rudder must be applied to keep the sideslip zero during the roll? Given that $S=16.4 \mathrm{~m}^{2}, S_{v}=2.1 \mathrm{~m}^{2}, 1_{v}=5.5 \mathrm{~m}, \mathrm{~b}=9.8$ $\mathrm{m}, \eta_{\mathrm{v}}=0.95, \mathrm{C}_{\mathrm{L} \alpha \mathrm{v}}=0.045 \mathrm{deg}^{-1}, \tau_{\text {rudder }}=0.5$.		
Q11	Define the following axes system. (a) Ground axes system (b) Body axes system (c) Stability axes system.	10	CO5
	SECTION-C ($\mathbf{1 * 2 0 = 2 0)}$		
Q 12	a) The longitudinal stability quartic of an airplane is $\lambda^{4}+4 \lambda^{3}+10 \lambda^{2}+\lambda+3.8=0$. Extract the roots and describe the motion depicted by them. (10M) OR The roots of a longitudinal stability quartic are:- $2.57 \pm$ i $2.63 ;+0.02$ and- 0.26. Discuss the types of motions indicated by each mode. What would be the final motion of the airplane? b) The lateral stability quartic for an airplane is: $\lambda^{4}+16 \lambda^{3}+13.1 \lambda^{2}+9.8 \lambda+0.73=0$ extract the roots of this quartic. Obtain the time to double or halve the amplitude and the period of the oscillatory mode(s). (10M) OR Derive the relationship between general body axes system and local horizon system for $\mathbf{i}_{\mathbf{h}}$.	20	CO5

