Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, DEC 2020

Course: Pipeline Transportation of Oil and Gas

Program: B. Tech. APE UPSTREAM

Course Code: CHGS3007P

Max. Marks: 100

Semester: VII

Time 03 hrs.

Instructions: Attempt All Questions

\mathbf{S}	7.	\sim	ΓΊ	r	$ box{}$	J	A
	r,			I U	יוע	N A	↛

S. No.	ATTEMPT ALL QUESTIONS (5*6=30 MARKS) Illustrate the term best efficiency point in Centrifugal pumps. Explain the term compressor ratio. What is the recommended values for compressor ratio for reciprocating and centrifugal compressors?		CO
Q.1			CO1
Q.2			CO4
Q.3	Discuss the term 'Class Location 'for cross- country pipelines.	5	CO1
Q.4	Describe 'Affinity Law' for centrifugal pumps.	5	CO3
Q.5	Explain the difference between "Break Horse Power" and "Horse Power" in pumping stations.	5	CO2
Q.6	Explain hydrostatic test pressure in pipelines	5	CO4
	SECTION B		
	(ATTEMPT ALL QUESTIONS- 5*10=50)		
Q.7	(a) Explain the advantages of pipeline transportation over other transportation modes (5 crucial points to be mentioned)		
	(b) Discuss the term "Adiabatic efficiency".	10	CO2
Q.8		10	
Q.8 Q.9	(b) Discuss the term "Adiabatic efficiency".		CO2
	(b) Discuss the term "Adiabatic efficiency". Explain performance curves for centrifugal pumps		COS
	(b) Discuss the term "Adiabatic efficiency". Explain performance curves for centrifugal pumps (a) Illustrate the term 'Hydraulic Balance in compressors'.	10	

SECTION-C				
(ATTEMPT ANY ONE QUESTION- 20*10=20)				
MISSING DATA ARE TO BE SUITABLY ASSUMED				

Q.12	The Salaya – Mathura pipeline is used for transporting oil from Salaya to Mathura		
	refinery. There are two intermediate stations, one at Viramgram and the other one at		
	Koyli. The length of Salaya- Mathura pipeline is 48 miles and is of 18 inch in		
	diameter, with 0.281-inch wall thickness. It is constructed of 5LX-65 grade steel. At		
	origin station Salaya, crude oil of specific gravity 0.85 and 10 cSt viscosity enters the		
	pipeline at a flow rate of 6000 bbl./hr. At first intermediate station Viramgram		
	(milepost 22), a new stream of crude oil with a specific gravity of 0.82 and 3.5 cSt		
	viscosity enters the pipeline at a flow rate of 1000 bbl. /hour. The mixed stream then		
	continues to another intermediate station Koyli (milepost 32) where 3000 bbl. / hour		
	is stripped off the pipeline. The remaining volume continues to the end of the pipeline		
	at delivery station Mathura.		
	(a) Evaluate the pressure required at origin station Salaya and the composition of the		
	crude oil arriving at terminus Mathura at a minimum delivery pressure of 50 psi.		
	Assume elevations at Salaya, Viramgram, Koyli, and Mathura to be 100, 150, 250,	20	COF
	and 300 feet, respectively. Use the Modified Colebrook-White equation for pressure		CO5
	drop calculations and assume a pipe roughness of 0.002 inches.		
	(b) Evaluate the pump HP that will be required at Salaya to maintain this flow rate,		
	assuming 50-psi pump suction pressure at Salaya and 80% pump efficiency?		
	(c) If a positive displacement (PD) pump is used to inject the stream at Viramgram,		
	solve for pressure and HP are required at Viramgram?		
	1. Frictional Pressure drop equation in oil pipelines		
	$Pm = 0.0605 fQ^2(Sg/D^5)$		
	2. Reynolds No. for Crude Oil Pipelines		
	R=92.24 Q/ (v D)		

3. Modified Colebrook White Equation

$$\frac{1}{\sqrt{f}} = -2\log_{10}\left(\frac{e}{3.7D} + \frac{2.825}{\text{Re}\sqrt{f}}\right)$$

Where: Q=Flow rate, bbl/day; D=Internal diameter, in.; v = Kinematic viscosity, cSt

4. R=353,678 Q/(vD)

Where: Q=Flow rate, m^3/hr .; D=Internal diameter, mm; v= Kinematic viscosity, cSt D=Pipe internal diameter, in.

5. Coversion Equations for SSU to Centistokes

Centistokes =
$$0.226(SSU) - \frac{195}{SSU}$$
 $32 \le SSU \le 100$

Centistokes ==
$$0.220(SSU) - \frac{135}{SSU}$$
 $SSU > 100$

6. Head to pressure conversion:

$$Head = \frac{2.31psig}{G}(USCS)$$

7. Specific gravity of blended liquids

$$S_b = \frac{Q_1 S_1 + Q_2 S_2 + \dots Q_n S_n}{Q_1 + Q_2 + \dots Q_n}$$

8. Viscosity of blended liquids

$$\sqrt{v_b} = \frac{Q_1 + Q_2 + Q_3 \dots}{\left(\frac{Q_1}{\sqrt{v_1}} + \frac{Q_2}{\sqrt{v_2}} + \frac{Q_3}{\sqrt{v_3}} \dots\right)}$$

	9. BHP required to pump the liquid $BHP = \frac{QP}{2449E}$		
	$\mathbf{Q} = \text{flow rate (barrel per hr.)}$ $\mathbf{P} = \text{Differentia pressure (psi)}$		
Q13	In a gas distribution pipeline, 60 MMSCFD enters the pipeline at A, as shown in Figure. If the delivery at B is increased from 20 MMSCFD to 30 MMSCFD by increasing the inlet flow at A, keeping all-downstream flow rates the same, <i>calculate the looping necessary if entire length AB is looped to ensure pressures are not changed throughout the pipeline</i> . Pipe AB is NPS 14, 0.250 in. wall thickness; BC is NPS 12, 0.250 in. wall thickness; 60 MMSCFD 40 MMSCFD 10 MMSCFD 20 MMSCFD 6000 psig E		
	70 MMSCFD 40 MMSCFD 10 MMSCFD 20 MMSCFD 600 psig B C D D 600 psig TO MMSCFD 40 MMSCFD 10 MMSCFD 20 MMSCFD 600 psig TO MMSCFD 40 MMSCFD 10 MMSCFD 20 MMSCFD 600 psig	20	CO3
	30 MMSCFD 30 MMSCFD 10 MMSCFD		

Pipe CD is NPS 10, 0.250 in. wall thickness; and DE is NPS 12, 0.250 in. wall thickness. The delivery pressure at E is fixed at 600 psig. The pipe lengths are as follow: AB = 12 miles; BC = 18 miles; CD = 20 miles; DE = 8 miles

The gas gravity is 0.60, and the flow temperature is 60°F. The compressibility factor and transmission factor can be assumed 0.85 and 20, respectively, throughout the pipeline. The base pressure and base temperature are 14.7 psia and 60°F, respectively. Also, calculate the loop length if a particular length of AB is looped with a diameter of 10 NPS and 0.25-inch wall thickness.

NPS12=12.75 inches; NPS10= 10.75 inches.

1. Pressure drop equation for gas pipelines

$$Q = 77.54 \left(\frac{T_b}{P_b}\right) \left(\frac{P_1^2 - P_2^2}{GT_f LZf}\right)^{0.5} D^{2.5}$$

2. Reynolds Equation for Gas Pipelines

$$Re = 0.5134 \left(\frac{P_b}{T_b}\right) \left(\frac{GQ}{\mu D}\right)$$
 (SI)

$$Re = 0.0004778 \left(\frac{P_b}{T_b}\right) \left(\frac{GQ}{\mu D}\right) \qquad (USCS)$$

3. Modified Colebrook White Equation

$$\frac{1}{\sqrt{f}} = -2\log_{10}\left(\frac{e}{3.7D} + \frac{2.825}{\text{Re}\sqrt{f}}\right)$$

4. Horsepower required to compress gas in compressor

$$HP = 0.0857 \left(\frac{\gamma}{\gamma - 1}\right) QT_1 \left(\frac{Z_1 + Z_2}{2}\right) \left(\frac{1}{\eta_a}\right) \left(\frac{P_2}{P_1}\right)^{\frac{\gamma - 1}{\gamma}} - 1$$

5. Adiabatic Efficiency of Compressor

$$\eta_a = \left(\frac{T_1}{T_2 - T_1}\right) \left[\left(\frac{z_1}{z_2}\right) \left(\frac{P_2}{P_1}\right)^{\frac{\gamma - 1}{\gamma}} - 1 \right]$$

6. BHP required to pump the liquid

$$BHP = \frac{QP}{2449E}$$

Q = flow rate (barrel per hr.)

P = Differentia pressure (psi)

7. Equivalent diameter equation

$$D_e = D_1 \left[\left(\frac{1 + Const}{Const.} \right)^2 \right]^{1/5} \quad Const. = \sqrt{\left(\frac{D_1}{D_2} \right)^5 \left(\frac{L_2}{L_1} \right)}$$