Name:

**Enrolment No:** 



Semester

Max. Marks: 100

Time

: VII

: 03 hrs.

## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

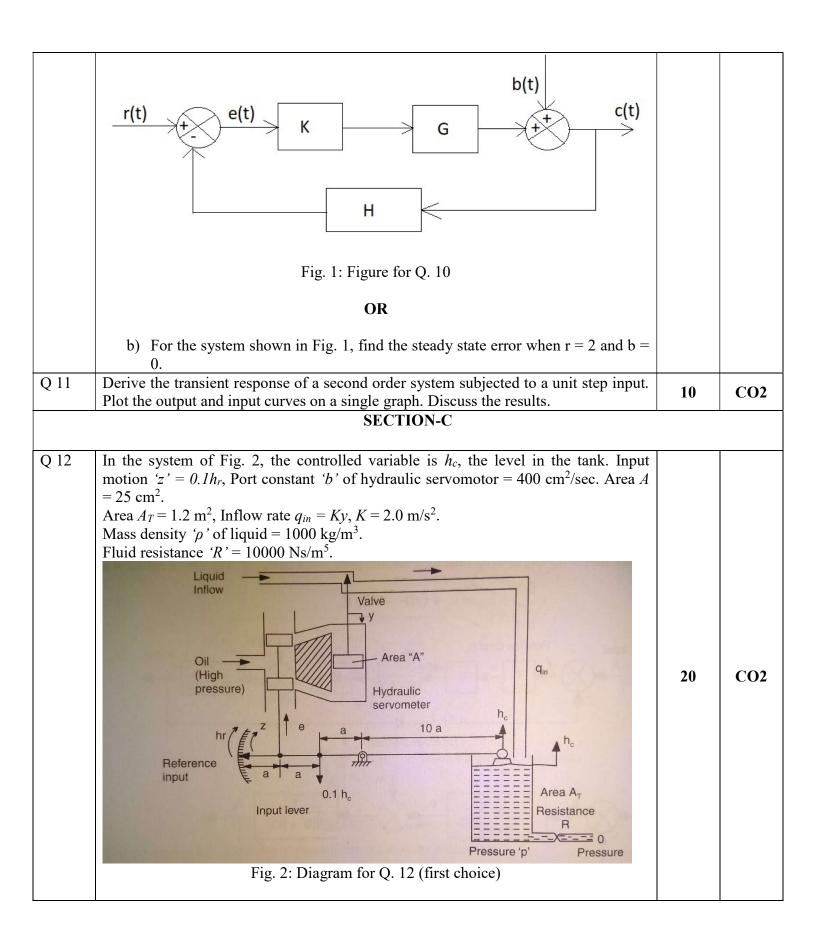
## **End Semester Examination, December 2020**

Programme Name: B.Tech. Mechatronics Engineering

Course Name : Mechatronics System Design

Course Code : MECH4001

Nos. of page(s) : 03


Instructions: 1. Assume any missing data 2. Section B has an internal choice in Q.10.

3. Section C has an internal choice.

|        | TEAT |               |
|--------|------|---------------|
| SECT   |      | ^             |
| ושעונו |      | $\overline{}$ |

| (A | Answer | in not | more | than | <b>50</b> | word | s) |
|----|--------|--------|------|------|-----------|------|----|
|----|--------|--------|------|------|-----------|------|----|

| S. No. | (                                                                                                                                                                                                                                                                                                                                                                                                                           | Marks | CO  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| Q 1    | Differentiate between closed-loop and open-loop control systems.                                                                                                                                                                                                                                                                                                                                                            | 5     | CO1 |
| Q 2    | Describe the methods of performing frequency response analysis of control systems.                                                                                                                                                                                                                                                                                                                                          | 5     | CO1 |
| Q 3    | State Routh criterion of stability.                                                                                                                                                                                                                                                                                                                                                                                         | 5     | CO1 |
| Q 4    | Discuss the steps of Nyquist stability criterion.                                                                                                                                                                                                                                                                                                                                                                           | 5     | CO1 |
| Q 5    | Define derivative time and integral time.                                                                                                                                                                                                                                                                                                                                                                                   | 5     | CO1 |
| Q 6    | Discuss the various functional elements of a measurement system.                                                                                                                                                                                                                                                                                                                                                            | 5     | CO1 |
|        | SECTION B                                                                                                                                                                                                                                                                                                                                                                                                                   | 1     |     |
|        | (Answer in not more than 150 words)                                                                                                                                                                                                                                                                                                                                                                                         |       |     |
| Q 7    | Describe the working of a field-controlled DC motor.                                                                                                                                                                                                                                                                                                                                                                        | 10    | CO2 |
| Q 8    | Discuss the various types of controllers that can be used in a feedback control system.                                                                                                                                                                                                                                                                                                                                     | 10    | CO2 |
| Q 9    | Describe the mathematical model of a liquid flow system having two interconnected tanks with capacities $C_1$ and $C_2$ respectively. Take two resistances: $R_1$ and $R_2$ at the inlet of each tank. The liquid pressure at the bottom of tank 1 is $p_1$ and at the bottom of tank 2 is $p_2$ . Take inlet pressure as $p_0$ . There is no outlet from tank 2. Derive the mathematical model and draw the block diagram. | 10    | CO2 |
| Q 10   | a) For the system shown in Fig. 1 below, find out the steady state error due to unit ramp reference input. Take $K = \frac{100}{D+10}$ , $G = \frac{1}{5D+1}$ , $b(t) = 0$ and $H = 1$ .                                                                                                                                                                                                                                    | 10    | CO2 |



| Draw the block diagram for the above system and hence                                                                                                                 | derive the transfer function. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| OR                                                                                                                                                                    |                               |
| (Internal Choice of Q. 12) Draw the closed-loop frequency plot) for the block diagram shown in Fig. 1. Take the system as provided in Q. 10. Ignore disturbance b(t). | • 1                           |