Name:			
Enrolment No:		UNIVERSITY WITH A PURPOSE	
Program	Online End Semesto A Primer on Stainless Steels n: B. Tech Mechanical & Mechatronics Code: MECH4032 ions: SECTIO	ROLEUM AND ENERGY STUDIES er Examination, December 2020 Semester: VII Time 03 hrs Max. Marks: 100	
	Each que	stion carries 5 marks	
S. No.			CO
Q 1	 b) Corrosion resistance of ferritic stainle chromium content	, e)	CO2
Q 2	 ii) Sigma formation tendency is increased a) Sulphur b) Carbon Answer: i), ii) 	test c) Non-destructive test d) Impact test by adding: c) Nitrogen d) Molybdenum	CO5
Q 3	 i) To qualify as Food Grade stainless stee a) 20% b) 15% c) 16% ii) What is the per capita consumption of a) 5 kg b) 6 kg c) 1 kg Answer: i), ii) 	d) 12.5% Stainless Steel in India?	CO1

Q 4	i) For bus body fabrication, globally the SS grade used is:	
X ·	a) EN 1.4003 b) SS 201LN c) SS 316L d) SS 2101	
	ii) For high corrosive applications, which grade of SS is preferred?a) Ferriticb) Duplexc) Martensiticd) Semi-austenitic	CO1
	Answer : i), ii)	
Q 5	i) Depth of mushy zone (solid + liquid) during solidification depends on: a) Solidus T _S b) Liquidus T _L c) Superheat d) T _L - T _S	
	ii) High segregation will result in the following problem during solidification:a) Lower liquidus b) Thin solid shell c) Thick solid shell d) No effect	CO3
	Answer : i), ii)	
Q 6	i) Solid fraction f_S during casting increases from 0 to 1. ZDT corresponds to: a) $f_S = 0$ b) $f_S = 0.7$ c) $f_S = 0.9$ d) $f_S = 1$	
	ii) The following is the approximate brittle temperature zone during solidification: a) $f_S = 0.9 - 1$ b) $f_S = 0.5 - 0.7$ c) $f_S = 0.3 - 0.5$ d) $f_S = 0 - 0.3$	CO3
	Answer : i), ii)	
	SECTION-B: Total 50 marks	
	Each question carries 10 marks	
Q 7	a) Mention the common exogenous entrapments in steel. (3)	
	b) Explain whether continuously cast slab of AISI 430, 304 and 310 grades will show tendency for sticking, bulging, or depression. (7)	CO3
Q 8	a) How do we calculate the Life Cycle Cost savings of a vehicle? (2)	
	b) What are the cost components for calculating the Life Cycle costing of structures? (2)	
	c) What are the 2 major stainless steel grades used in Architecture, Building and Construction segments? Give 3 reasons for the same. (3)	CO1
	d) What is the grade of stainless steel used for railways and material handling applications? Give 4 reasons for the same. (3)	
Q 9	a) What is the difference between deep-drawing and stretch forming process? (3)	
	b) What is LDR (Limiting draw ratio) and average plastic strain ratio (R-bar)? (5)	CO5
	c) What is the importance of these two parameters on deep draw ability? (2)	

Q 10	a) What is sensitization in stainless steel, explain with schematic diagram. (5)	
	b) What are the suggested precautionary steps to minimize intergranular corrosion. (5)	CO5
Q 11	What are the advantages of using argon in AOD process for decarburization?	CO4
	SECTION-C: Total 20 marks	
Q 12	 Liquid iron, 100 tons, at 1650 K, contains 4% dissolved carbon. Half of the carbon in metal is oxidized to 80 volume % CO and 20 volume % CO₂ by oxygen gas supplied at 298 K; no iron is oxidized. CO and CO₂ gases leave at constant temperature of 1550 K. Calculate the final temperature of metal with remaining carbon dissolved in it. Given the following (T is in Kelvin): Enthalpy values: Fe (kJ/kg of Fe): 0.72105*T - 3.86 C (kJ/kg of C): 1.996786*T - 1057.5 CO₂ (kJ/kg of CO₂): 1.2331*T - 449.49 CO (kJ/kg of CO): 1.5884*T - 652.08 Heat of reaction values: At 25°C: Pure carbon(s) C → CO gas: 3980 kJ/kg of CO exothermic At 25°C: Pure carbon(c) C → CO gas: 8932 kJ/kg of CO avothermic 	CO4
	 At 25°C: Pure carbon(s) C → CO₂ gas: 8932 kJ/kg of CO₂ exothermic Heat of solution of carbon (endothermic) = 2211 kJ/kg of C 	