Name:

Enrolment No:

S. No. **Question**

Marks

 \mathbf{CO}

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

Online End Semester Examination, Dec 2020

Course: Solar Thermal Technologies

Semester: VII Program: B. Tech. ME Time 03 hrs.

Course Code: MECH 4016P Max. Marks: 100

SECTION A

1. Each Question will carry 5 Marks

2. Instruction: Complete the statement / Select the correct answer(s)

5.110.	Question	Mains	CO		
Q 1	Define the terms (i) Beam radiation (ii) Diffused radiation.	5	CO1		
Q 2	Discuss three main advantages of testing of solar collectors- ASHARE standard	5	CO2		
Q 3	Discuss the main three advantages of solar dryer?	5	CO1		
Q 4	Describe the central power receiving system?	5	CO1		
Q 5	Discuss main two applications of Desiccant cooling?	5	CO1		
Q 6	For a parabolic collector of length 2m, the angle of acceptance is 15°. Find the concentration ratio of the collector.	5	CO3		
	SECTION B				
	Each question will carry 10 marks				
2. Instruction: Write short / brief notes					
Q 7	Discuss the parameters governing the performance of flat plate collectors.	10	CO2		
Q 8	Calculate the angle made by beam radiation with the normal to a flat plate collector on May 1 at 0900h (local apparent time). The collector is located in New Delhi (28°35'N, 77°12'E). It is tilted at an angle of 36° with the horizontal and is pointing due south. Assume any data, if missing.		CO4		
Q 9	Explain briefly (i) Compound parabolic collector (ii) Thermodynamics limit to concentration.	10	CO3		
Q 10	Explain solar desalination? Discuss the principle of operation on which the solar desalination works.	10	CO2		
Q 11	A Carnot engine working between 400°C and 40°C products 130kJ of work. Determine: (i) The engine thermal efficiency (ii) The heat added (iii) The entropy changes during heat rejection process. Assume any data, if missing. OR	10	CO4		

	Compute the monthly average hourly solar flux received on a flat plate collector facing due south ($\gamma=0^{o}$) having a slope of 12°. The collector is located at a place 15°00′N on 20 th day of October. The data given are: Time 11:12h(local apparent time), $H_g=2408kJ/m^2/h$, $H_d=1073kJ/m^2/h$, Ground reflectivity, $\rho=0.25, \omega=7.5^{o}$. Assume any data, if missing.				
Section C					
1. Each Question carries 20 Marks.					
2. Instruction: Write long answer.					
Q 12	Explain briefly the various types of solar radiation measurement instruments.	20			
	OR				
	Discuss the differentiate between absorption cooling and passive desiccant cooling		CO3		
	methods using solar energy.				