Name:			UPE	S
Enrolment No:	UPES SAP ID:	UNIVERSIT	Y WITH A PUR	POSE
UNIVERSITY OF PETI	L ROLEUM AND ENERGY	STUDIES		
	xamination, December, 20			
Course: Operations Research Program: B.Tech – Mechanical		Semester: VII Time: 3 hours		
Course Code: IPEG 351		Max. Marks: 1	00	
No. of Pages: 06				
Note:				
1. The paper consists of 3 sections A, B and C	1 /•			
2. For Section A, type your answers in the bro	•			
3. For Sections B and C, scan and upload your	r answers.			
4. In Section C, Q1 has internal choice.	Section A			
Q1. i. Which of the following is not the phase			5	
A. Formulating a problem	se of OK methodology:		5	
B. Constructing a model				
C. Establishing controls				
D. Controlling the environment				
ii. Hungarian Method is used to solve				CO1
a. A transportation problem				
b. A travelling salesman problem				
c. A LP problem d. Both a & b				
iii. In Degenerate solution value of objec	tive function			
a. increases infinitely		-		
b. basic variables are nonzero				
c. decreases infinitely				
d. One or more basic variables are	zero			
iv. Identify the type of the feasible region	n given by the set of			
inequalities				
x - y <= 1				
x - y >= 2				
where both x and y are positive.				
a. A triangle				
b. A rectangle				
c. An unbounded region d. An empty region				

	v. An assignment problem can be viewed as a special case of transportation		
	problem in which the capacity from each source isand the demand at each		
	destination is		
	A. 1; 1		
	B. Infinity; infinity		
	C. 0; 0		
	D. 1000; 1000		
	E1; -1		
Q2.	i. In game theory, a situation in which one firm can gain only what another firm		
Q2.	 In game theory, a situation in which one firm can gain only what another firm loses is called a 		
	a. nonzero-sum game.		
	b. prisoners' dilemma.		
	c. zero-sum game.		
	d. cartel temptation.		
	 ii. In game theory, the outcome or consequence of a strategy is referred to as the a. payoff. 		
	a. payoff. b. penalty.		
	c. reward.		
	d. end-game strategy		
	iii. For a salesman who has to visit n cities which of the following are the ways of his		
	tour plan		
	a. n!		
	b. n+1!		
	c. n-1! d. n		
	iv. An initial transportation solution appears in the table.	_	~~ (
	Factory	5	CO1
	C D Capacity		
	A 10 0 10		
	B 15 25 40		
	Warehouse		
	Demand 25 25 50		
	Can this solution be improved if it costs \$5 per unit to ship from A to C; \$7 per		
	unit to ship from A to D; \$8 to ship from B to C; and \$9 to ship from B to D?		
	a. Yes, this solution can be improved by \$50.		
	b. Yes, this solution can be improved by \$100.		
	c. No, this solution is optimal.		
	d. Yes, the initial solution can be improved by \$10.		

Q3.	Find the tasks on Task	fashion a. t b. t c. t d. c sequence two mac	one choo he edge he solut he solut one mus e that mi hines.	ortation te oses. The c constraint ion is not c ion must b t use the n nimizes the	only re ts for t degen be opt orthw total	estriction supply a erate. imal. vest-corr elapsed t	n is tha nd der ner me time re	it mand a ithod quired	re satisf to compl	ied.	following		5	CO2
	M1 M2	2 6	5 8	4	9 4	6	8		7 3	5 8	4	—		
Q4.				e by using t			of dom			V	VI		5	CO2
					1	4	2	0	2	1	1			
					2	4	3	1	3	2	2			
					3	4	3	7	-5	1	2			
					4	4	3	4	-1	2	2			
					5	4	3	3	-2	2	2			
Q5.	Find the	range of	values of	p and q tha	at will	render tł	ne entr	y a sado	lle point	for the ${ m g}$	game.		5	CO4
				Player A		Player E	}							
						B	1	B ₂			B ₃			
				A ₁		2		4		5				
				A ₂		10		7		q				
				A ₃		4		Р		6				

Q6.	Consider the network shown in figure. The three time estimates for activities are given				
	along the arrows. Determine the critical path and calculate the floats.				
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	CO2		
	Section B				
Q1.	Consider the following liner programming problem.	10	CO4		
	Minimize $Z = X_1 - X_2$				
	Subject to $X_1 + X_2 \ge 2$				
	$X_1 + 2X_2 \le 8$				
	$X_1 \ge 0, X_2 \ge 0,$				
	Identify the feasible region on a graphical representation of the problem and				
	answer the following question: (a) What is the optimal solution				
	(i) To the given problem?				
	(ii) When the objective function is maximize $Z = X_1 + X_2$?				
	(iii) When X ₁ and X ₂ are unrestricted in sign?				
	(b) How should the first constraint be altered so that a feasible unbounded				
	solution would exist for condition (iii) above for both cases (i) and (ii)?				
Q2.	Customers arrive at a clinic at the rate of 8/hour (Poisson Arrival) and the doctor can serve at the rate of 9/hour (exponential). a. What is the probability that a customer does not join the queue and walks into the	10	CO3		
	doctor's room?				
	b. What is the probability that there is `no queue?c. What is the probability that there are 10 customers in the system?				
	d. What is the expected number in the system?				
	e. What is the expected waiting time in the queue?				
Q3.	A glass factory specializing in crystal is developing a substantial backlog and the firm's	10			
	management is considering three courses of action: (S_1) arrange for sub-contracting, (S_2)		CO4		
	construct new facilities. The correct choice depends largely upon future demand which				

	•), 0.50 and 0.40.		nanagement ranks the res reveals the effect upon the faction S ₃ (Construct facilities)	-		
	Low (p = 0.10) Medium (p = 0.50) High (p = 0.40)	10 50 50	-20 60 100	-150 20 200			
	Show this decision a preferred decision a			cision tree and indicates th e.	e most		
Q4.	of candidates to the (maximization). Her	e positions (in a re, the rows are th	scale of 10) and positions and	lates. He has assessed the suit and solves an assignment p d the columns are the peop is shown in the table below.	roblem le. The	10	CO4
	is asked to co new candidat b. Solve the ass	onsider the same for the to the four posit	our candidates for ion is [6 3 9 5 with four candi	dates optimally. Does the all	y of the		
Q5.	twelve posts advertis 30,000. A further for remaining require kn 25,000. It is decided or the company's mi Of the short-listed three in finance and salaries of three grou Rs 20,000 or less.	sed require special our need software nowledge in huma that any selected nimum salary, wh applicants, all pos software, five in f ups are Rs 25000,	ized knowledge knowledge car an resource ma candidate shoul ichever is highe sse's knowledg ïnance only and Rs 30,000, and	les to recruit MBA's. Three e of finance and carry a salary ry a salary of Rs. 40,000 wh nagement and carry a salary d be paid either one's curren er. ge in human resource managed four in software only. The Rs 35,000, respectively othe total salaries paid to the re	y of Rs. hile the of Rs. t salary gement, present ers earn	10	CO3

	Section C						
Q1	XYZ Company has three departments – Assembly, Painting and Packing, and can make three types of almirahs. An almirah of type 1 requires on hour of assembly, 40 minutes of painting and 20 minutes of packing time, respectively. Similarly, an almirah of type 2 needs 80 minutes, 20 minutes and one hour, respectively. The almirah of type 3 requires 40 minutes each of assembly, painting and packing time. The total available time at assembly, painting and packing departments is 600 hours, 400 hours and 800 hours, respectively. Determine the number of each type of almirahs that must be produced in order to maximize the profit. The unit profit for types 1, 2 and 3 is Rs 40, Rs 80 and Rs 60, respectively. Suppose that the manager of XYZ company is thinking of renting the production capacities of the three departments to another almirah manufacturer – ABC Company. ABC Company is interested in minimizing the rental charges. On the other hand, the XYZ Company would like to know the worth of production hours to them, in each of the departments to determine the rental rates. (a) Formulate this Problem as an LP problem and solve it to determine the number of each type of almirahs that should be produced by the XYZ Company in order to maximize its profit. (b) For LP problem in (a), formulate its dual and interpret your results. OR At a service station a study was made over a period of 25 days to determine both the number of automobiles being brought in for service and the number of automobiles serviced. The results are given below.	20	CO3				
	No. of automobiles arriving and serviced: 0 1 2 3 4 5						
	Frequency of arrivals (days):2410531						
	Frequency of daily serviced (days): 3 2 12 3 4 1						
	Simulate the arrival/ service pattern for a ten-day period and estimate the mean number of automobiles that remain in service for more than a day.						
	(Use the random numbers: 09, 54, 42, 01, 80, 06, 26, 67, 79, 49, 16, 36, 76, 68, 91, 97, 85, 56, 84. Use the first ten for arrivals and the next ten for service).						