Name: Enrolment No:		UPES SAP ID:		
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December, 2020				
Course: Operations Research Program: B.Tech - Mechanical Course Code: IPEG 351 No. of Pages: 06 Note: 1. The paper consists of 3 sections A, B and C . 2. For Section A, type your answers in the browser directly 3. For Sections B and C, scan and upload your answers. 4. In Section C, Q1 has internal choice.				
Section A				
Q1.	i. Which of the following is not the phase A. Formulating a problem B. Constructing a model C. Establishing controls D. Controlling the environment ii. Hungarian Method is used to solve a. A transportation problem b. A travelling salesman problem c. A LP problem d. Both $\mathrm{a} \& \mathrm{~b}$ iii. In Degenerate solution value of obje a. increases infinitely b. basic variables are nonzero c. decreases infinitely d. One or more basic variables are iv. Identify the type of the feasible regio inequalities $\begin{aligned} & x-y<=1 \\ & x-y>=2 \end{aligned}$ where both x and y are positive. a. A triangle b. A rectangle c. An unbounded region d. An empty region	e of OR methodology? ive function \qquad zero given by the set of	5	$\mathrm{CO1}$

Q6.	Consider the network shown in figure. The three time estimates for activities are given along the arrows. Determine the critical path and calculate the floats.	5	CO 2
Section B			
Q1.	Consider the following liner programming problem. Minimize Subject to $\begin{aligned} Z=X_{1}- & X_{2} \\ & X_{1}+x_{2} \geq 2 \\ & X_{1}+2 x_{2} \leq 8 \\ & X_{1} \geq 0, \quad X_{2} \geq 0, \end{aligned}$ Identify the feasible region on a graphical representation of the problem and answer the following question: (a) What is the optimal solution (i) To the given problem? (ii) When the objective function is maximize $Z=X_{1}+X_{2}$? (iii) When X_{1} and X_{2} are unrestricted in sign? (b) How should the first constraint be altered so that a feasible unbounded solution would exist for condition (iii) above for both cases (i) and (ii)?	10	CO4
Q2.	Customers arrive at a clinic at the rate of 8/hour (Poisson Arrival) and the doctor can serve at the rate of $9 /$ hour (exponential). a. What is the probability that a customer does not join the queue and walks into the doctor's room? b. What is the probability that there is 'no queue? c. What is the probability that there are 10 customers in the system? d. What is the expected number in the system? e. What is the expected waiting time in the queue?	10	CO 3
Q3.	A glass factory specializing in crystal is developing a substantial backlog and the firm's management is considering three courses of action: $\left(\mathrm{S}_{1}\right)$ arrange for sub-contracting, $\left(\mathrm{S}_{2}\right)$ construct new facilities. The correct choice depends largely upon future demand which	10	CO4

	may be low, medium, or high. By consensus, management ranks the respective probabilities as $0.10,0.50$ and 0.40 . A cost analysis reveals the effect upon the profits that is shown in the table. Show this decision situation is in the form of a decision tree and indicates the most preferred decision and corresponding expected value.		
Q4.	Shankar has three positions to fill and has four candidates. He has assessed the suitability of candidates to the positions (in a scale of 10) and solves an assignment problem (maximization). Here, the rows are the positions and the columns are the people. The fourth row is a dummy row. An intermediate iteration is shown in the table below. a. Find the optimal allocation? His boss now introduces a fourth position and Shankar is asked to consider the same four candidates for the position. The suitability of the new candidate to the four position is $\left[\begin{array}{lll}6 & 3 & 9\end{array}\right]$. b. Solve the assignment problem with four candidates optimally. Does the allocation change with the introduction of the new candidate?	10	$\mathrm{CO4}$
Q5.	The Embeeyeh company, planning to expand, decides to recruit MBA's. Three of the twelve posts advertised require specialized knowledge of finance and carry a salary of Rs. 30,000. A further four need software knowledge carry a salary of Rs. 40,000 while the remaining require knowledge in human resource management and carry a salary of Rs. 25,000 . It is decided that any selected candidate should be paid either one's current salary or the company's minimum salary, whichever is higher. Of the short-listed applicants, all posse's knowledge in human resource management, three in finance and software, five in finance only and four in software only. The present salaries of three groups are Rs 25000 , Rs 30,000 , and Rs 35,000 , respectively others earn Rs 20,000 or less. Formulate a transportation problem to minimize the total salaries paid to the recruited employees.	10	CO3

Section C

Q1 \quad XYZ Company has three departments - Assembly, Painting and Packing, and can make three types of almirahs. An almirah of type 1 requires on hour of assembly, 40 minutes of painting and 20 minutes of packing time, respectively. Similarly, an almirah of type 2 needs 80 minutes, 20 minutes and one hour, respectively. The almirah of type 3 requires 40 minutes each of assembly, painting and packing time. The total available time at assembly, painting and packing departments is 600 hours, 400 hours and 800 hours, respectively. Determine the number of each type of almirahs that must be produced in order to maximize the profit. The unit profit for types 1,2 and 3 is Rs 40 , Rs 80 and Rs 60, respectively.
Suppose that the manager of XYZ company is thinking of renting the production capacities of the three departments to another almirah manufacturer - ABC Company. ABC Company is interested in minimizing the rental charges. On the other hand, the XYZ Company would like to know the worth of production hours to them, in each of the departments to determine the rental rates.
(a) Formulate this Problem as an LP problem and solve it to determine the number of each type of almirahs that should be produced by the XYZ Company in order to maximize its profit.
(b) For LP problem in (a), formulate its dual and interpret your results.

OR

At a service station a study was made over a period of 25 days to determine both the number of automobiles being brought in for service and the number of automobiles serviced. The results are given below.

No. of automobiles arriving and serviced:	0	1	2	3	4	5
Frequency of arrivals (days):	2	4	10	5	3	1
Frequency of daily serviced (days):	3	2	12	3	4	1

Simulate the arrival/ service pattern for a ten-day period and estimate the mean number of automobiles that remain in service for more than a day.
(Use the random numbers: $09, \quad 54, \quad 42, \quad 01, \quad 80, \quad 06,26, \quad 67$, $79,49,16, \quad 36, \quad 76, \quad 68, \quad 91, \quad 97, \quad 85, \quad 56, \quad 84$. Use the first ten for arrivals and the next ten for service).

