Name:					
Enrolment No:		UNIVERSITY WITH A PURPOSE			
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, December 2020 Course: Hazard Identification and Computer Aided Risk Analysis Semester: VII Program: B. Tech. FSE Time 03 hrs.				
Course Code: HSFS 4002 Max. Marks: 100					
SECTION A					
SECTION A Each Question carries 5 Marks					
S. No.	Question		<u> </u>		
Q 1	Write the suitability of below mentioned met	hod:	CO		
¥ I	while the summity of below mentioned met	nou.	CO1		
	a. FMEA				
	b. What if Analysis				
	c. HIRA				
Q2	Write short note on:		CO1		
x -	a. i-SAFE Index				
	b. Environmental Stability Condition	ns			
Q3	List prerequisites, data source and team of Pr	eliminary Hazard Analysis.	CO2		
Q4	List all loss control credit factors along with calculation steps.		CO2		
Q5	Write step by step procedure of Event Tree A	nalysis.	CO1		
Q6	Describe various strategies of Inherent Safety	along with examples.	CO2		
	SI	ECTION B			
	Each question carries 10 marks				
Q 7	What is CEI? Explain uses of CEI. Write cor	nplete procedures for calculation of CEI.	CO3		
Q 8	With the help of any practical scenario proo	f that, "failure probability values using minimum	CO4		
	cut sets method is greater than the values of a	actual fault tree method".			
Q 9	Describe PROBIT methods for effect model	ling and brief various technique available to find	CO4		
	out probability using PROBIT values.		004		
Q 10	 Briefly discuss below mentioned points: 1. History of HAZOP with the help of to 2. Objectives of HAZOP 3. Procedure of HAZOP 	wo examples of accidents	CO4		

	4. Advantages of HAZOP over other risk assessment tools.	
Q 11	Calculate the degree of hazard for given data:	
	General process hazard factor = 17.2 , Special process hazard factor = 4.8	
	MF ₁ = 4.8 (20%), MF ₂ = 7.9 (35%), MF ₃ = 10.25 (45%) and MF ₄ = 12.6 (remain)	
	Section C Each Question carries 20 Marks.	
Q12	A 2- inch nozzle fails on the bottom of the spherical vessel (capacity = $1.134*10^6$ kg)	CO5
	allowing liquid chlorine to escape. Calculate: leakage size, CEI and HD for given	
	Information:	
	Pressure inside the cylinder = 332 kPa gauge, height of liquid = 600 cm, Density = 1458 kg/m ³ , Liquid releasing time = 0.25 hr, ambient air temperature = 34 °C, normal boiling point temperature = 241 K, Storage temperature = 41 °F, ERPG-1 = 3 mg/m ³ , ERPG-2 = 9 mg/m ³ , ERPG-3 = 58 mg/m ³ , Strength of Airborne Chlorine = 66.3 Kg/s, wind speed = 4.8	
	m/s.	