Name: Enrol		
Cours Progr Cours	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, Dec 2020 Semester: VII Electrical circuit analysis Time 03 hrs. m: B. Tech. Electrical Max. Marks: 100 Code: EPEG 2009	
	Each Question will carry 5 Marks Instruction: Complete the statement / Select the correct answer(s)	
S. No.	Question	CO
Q 1	The product of apparent power and cosine of the phase angle between circuit voltage and current is (A) True power (B) Reactive power (C) Volt-amperes (D) Instantaneous power	C01
Q2	Time constant of a capacitive circuit (A) Increases with the decrease of capacitance and decrease of resistance (B) Increases with the decrease of capacitance and increase of resistance (C) Increases with the increase of capacitance and decrease of resistance (D) Increase with increase of capacitance and increase of resistance	CO 2
Q3	In each of the three coils of a three phase generator, an alternating voltage having an r.m.s. value of 220 V is induced. Which of the following values is indicated by the voltmeters? (A) 220 V (B) $220 \sqrt{ } 3 \mathrm{~V}$ (C) $220 / \sqrt{3} \mathrm{~V}$ (D) None of the above	$\mathrm{CO3}$
Q4	A junction where two (or) more than two network elements meet is known as a \qquad	C01
Q5	By using source transformation voltage source in series resistor is replaced by ___	C01
	\qquad is the expression for the thevenin's current if there is an external resistance in series with the R_{Th} ?	C01
SECTION B 1. Each question will carry 10 marks 2. Instruction: Write short / brief notes		

Q 7	The network shown in figure has acquired steady state with the switch closed for $\mathrm{t}<0$. At $\mathrm{t}=0$, the switch is opened. Obtain $\mathrm{i}(\mathrm{t})$ for $\mathrm{t}>0$. OR The switch in the network shown in figure is closed at $t=0$. Determine the voltage $V_{c}(t)$ across the capacitor.	CO 2
Q 8	Find the current through j 3 ohm branch using super position theorem	CO1
Q 9	Find $\mathrm{L}\left\{\mathrm{f}^{\prime}(\mathrm{t})\right\}$ of $f(t)=\frac{1-\cos 2 t}{t}$, also verify the initial value and final value theorem for $\mathrm{f}(\mathrm{t})$.	CO 2
Q 10	The Z-parameter of a two port network are $\mathrm{Z}_{11}=2.1 \Omega, \mathrm{Z}_{12}=\mathrm{Z}_{21}=0.6 \Omega, \mathrm{Z}_{22}=1.6 \Omega$. A resistor of 2Ω is connected across port 2. What voltage must be applied at port 1 to produce a current of 0.5 A in the 2Ω resistor.	CO 3
Q 11	How is two terminal pair network characterized in terms of input output variables? Also mention various two port parameters and write equations in terms of these parameters with their equivalent circuit diagram.	CO3
	Section C Each Question carries 20 Marks. Instruction: Write long answer.	

