Name:

Enrolment No:

UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2020

Programme Name: B. Tech (ECE)

Course Name : Microwave Engineering

Course Code : ECEG 4003

Semester : VII Time : 03 hrs Max. Marks : 100

Nos. of page(s) Instructions: : 02 All Questions are Compulsory.

	SECTION -A (6x5=		
S. No.		Marks	CO
Q 1	Design maximally flat low pass filter using microstrip of order 3 with $Z_0=50$ ohms, $Z_1=20$ and $Z_h=120$ ohms. g1=1; g2=2 and g3=1. Design involves electrical length of filter sections and width of the line. Signal frequency is 4 GHz. Filter is realized with dielectric substrate of RT-duriod 5880 (ϵ r=2.2, h=0.762 mm).	5	CO2
Q 2	Design Maximally flat BPF and BSF using Quarter wave resonators. Center frequency is 3 GHz and bandwidth is 15%, port impedance is 40 ohms.(Find Z_{01} , Z_{02} and Z_{03}) in both cases.	5	CO2
Q 3	In O-type TWT, beam voltage is $3KV$, $Z_0=10$ ohms, beam current is 20 mA, Operating frequency is 10 GHz, Determine the four propagation constants of the four modes	5	CO3
Q 4	Three port circulator has an insertion loss of 1 dB, isolation of 30 dB and SWR of 1.5. Find the S-matrix.	5	CO2
Q5.	 a) An M-Si-M BARITT diode has the following parameters: Relative dielectric constant of Si=11.8, Si length (L) =6 μm, Donor Concentration (N) = 3 x 10²¹ m^{-3.} Find the breakdown electric field. b) For a transit –time domain mode, domain velocity is equal to drift velocity and is about 10⁷ cm/s. Determine the drift length of the diode at a frequency of 8 GHz. 	5	CO4
Q6.	Calculate fc, λg , βg , Zg and Vp for TE ₂₃ modes in cylindrical waveguide operating at 2 GHz with the dimensions of a=3 cm filled with dielectric material of ϵr =3.1. Given X'np=9.970	5	CO1
	SECTION -B (5x10=		
Q 7	Derive the expression for efficiency of Reflex Klystron	10	CO3
Q 8	Derive the field expression for TE modes in Cylindrical Waveguide.	10	CO1

Q 9	Explain V-I characteristics of Tunnel diode and calculate the gain under series loading.	10	CO4	
Q 10	With the neat sketch of Microwave test bench, how will you measure the frequency and SWR.	10	CO5	
Q11	Establish the conversion relation between LPF into BPF and HPF	10	CO2	
SECTION –C (1x20=20)				
Q12	Design an amplifier with matching networks using shunt stubs in both input and output for maximum gain at 5 GHz with GaAs FET that has S-parameters: $Z_0=50$ ohms $S_{11}=0.65(-140 \text{ deg})$ $S_{12}=0.04(60 \text{ deg})$ $S_{21}=2.4 (50 \text{ deg})$ $S_{22}=0.70(-65 \text{ deg})$ Calculate the gain of the amplifier and comment on the stability.	20	CO2	
