Name:

Enrolment No:

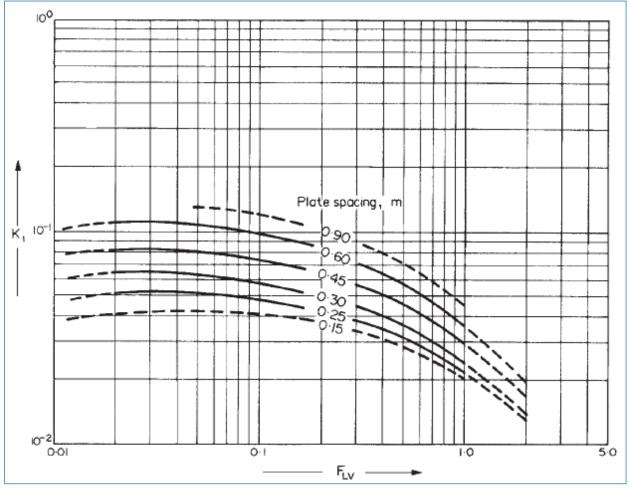
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Somester Examination December 2020

End Semester Examination, December 2020

Course: B.Tech Chemical R&P

Program: Chemical Process Equipment Design & Drawing

Semester: VII Time 03 hrs. Max. Marks: 100


Nos. of page(s): 03

Course Code: CHEG 401

Instructions: Open Book exam.	Data set, Tables, Charts, Figures, Calculator are allowed
	SECTION A - Type the Questions

	SECTION A - Type the Questions		
S. No.		Marks	СО
Q 1	Define Elastic Limit, Yield stress and Ultimate stress. Define the relation between yield stress and factor of design margin.	1+1+1 +3= 6	CO1
Q 2	Differential between thin vessel and thick vessel. Explain the different stresses considered for both the cases.	6	CO2
	SECTION B – Scan and Upload		
Q 3	Consider a quarter (1/4 th) filled horizontal vessel with ID = 3 m & L/D ratio = 2. No insulation is provided over the vessel surface. Consider the latent heat of vaporization of the stored material as 90 kJ/kg. Calculate the Relief Rate for Fire case scenario. Consider adequate drainage and firefighting is available.	6	CO3
Q 4	Discuss application of different pitch configurations in heat exchanger	6	CO4
Q 5	Discuss the performance diagram of a column. Explain what is internal reflux and external reflux	6	CO5
	SECTION-C – Scan and Upload		
Q 6	 44000 lb/hr of a 42°API kerosene leaves the bottom of a distillation column at 380 °F and will be cooled to 210 °F by 34 °API Mid-continent crude coming from storage at 100 °F and heated to 160 °F. A 10 psi pressure drop is permissible on both streams, and a combined dirt factor of 0.003 should be provided. Available for this service is a 21 ¼" ID exchanger having 156 3/4" OD, 12 BWG tubes 18'0" long and laid out on 1" triangular pitch. The bundle is arranged for 2 passes, and baffles are spaced 4" apart. 1) Calculate Flow rate of the cold fluid 2) Is the exchanger suitable? Consider the properties of the fluid at average temperatures. 	35	CO4
Q 7	Acetone is to be recovered from an aqueous waste stream by continuous distillation. The feed will contain 15 per cent w/w acetone. Acetone of at least 99 w/w% purity is wanted, and the aqueous effluent must not contain more than 60 ppm acetone. The feed will be at 20 ^o C. Total number of ideal stages 18. Other details are given as: Feed rate = 15,000 kg/hr. MW _{acetone} = 57, MW _{water} =18. Slope of the Operating line at bottom & Top are 6.0 & 0.70 respectively. Reflux ratio = 1.20	35	CO5

Component	Temp (°C)	$\rho_v (kg/m^3)$	$\rho_l (kg/m^3)$	Surface Tension (N/m)
Steam	106	0.72	950	55x10 ⁻³
Acetone (99 w/w %)	57	2.05	750	23x10 ⁻³
a) Velocity	(% flooding) a mer area (as %	at maximum f	flow rate	e design of the column

