Name:					
Name: Enrolment No:					
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES					
End Semester Examination, December 2020					
Progr	Programme Name: B.Tech., APE Gas Semester : VII				
Course Name : Reservoir Engineering - II Time		: 03 hr	S		
Course Code : PEAU 4104 Max. Mar					
Nos. of page(s) : 2					
Instru	ctions: 1. Assume any data missing.	_			
CNL	2. Attach any graphs and/or data sheets (if any) used to the answer sheets for evaluat				
SNo	SECTION A (6*5=30M)	Marks	CO		
Q 1	State the two methods for determining the hydrocarbon in place. What is the fundamental difference between the two methods?	5	CO1		
	Define the following and mention their significance				
Q 2	i. Formation volume factor ii. Gas oil ratio	5	CO2		
Q 3	List various types of decline curves used to analyze production rates	5	CO3		
Q 3 Q 4	Compare between exponential and hyperbolic decline approaches	5	CO3		
Q 4 Q 5	Define coning and mobility ratio. Mention the significance of mobility ratio in coning.	5	CO3		
Q 6	Define fractional flow and comment on its significance	5	CO3		
Ϋ́	SECTION B (5*10=50M)	5	04		
	The PVT data from volumetric depletion of an under-saturated reservoir is as follows:				
	At Initial reservoir pressure of 3500 psi, the gas-oil ratio is 1100 SCF/STB and oil-				
	formation volume factor is 1.572 RB/STB.				
Q 7	At the depleted pressure and temperature of 2800 psi and 90°F respectively, the gas-oil	10	CO1		
C	ratio is 900 SCF/STB, Z is 0.87, oil formation volume factor is 1.520 RB/STB and the				
	cumulative production is 1.486 MM STB with a gas oil ratio of 3300 SCF/STB.				
	Calculate the initial stock tank oil in place and the recovery factor at 2800 psi.				
	A gas field extended over 1500 acres with an average payzone thickness of 40 ft. The				
	average porosity and connate water saturation of the payzone are respectively 22% and				
	23%. The formation volume factor of gas at the initial reservoir pressure of 3250 psi was				
	calculated to be 0.00533 CF/SCF. Calculate the				
	i. Initial gas in the reservoir.				
Q 8	ii. Recovery factor of the volumetric reservoir at an abandonment pressure of 500 psi if	10	CO2		
Q U	the corresponding formation volume factor is 0.03623 CF/SCF.	10	001		
	iii. Recovery factor of the reservoir if it is produced under water drive such that the				
	pressure stabilizes at 1500 psia, where the residual gas saturation and the gas				
	formation volume factor were respectively 24% and 0.01122 CF/SCF.				
	iv. Recovery factor of the reservoir if it is produced under very active water drive with				
	no decline in reservoir pressure resulting in a residual gas saturation of 24%.				
Q 9	The general form of all decline curves is given by the hyperbolic relationship: $\frac{da/dt}{dt}$				
	$D = -\frac{dq/dt}{q} = K q^n$	10	CO3		
	<i>y</i> Using the above equation, derive general expressions for production rate versus time and				
		1	<u> </u>		

	production rate versus cumulative production. Having derived these two general			
	expression for any value of n, show their form when $n = 1$.			
	Derive an expression for maximum possible oil flow rate through a well, which penetrates			
	a depth ' D_t ' into a oil zone of thickness ' h ' during gas coning			
Q10	Gas D _t h h h h h h h h h h h h h	10	CO3	
Q11	Derive an expression for velocity of a plane of constant water saturation displacing oil through linear system by Buckley-Leverett approach.	10	CO4	
SECTION-C (1*20=20M)				
	The following data are available for a linear-reservoir system:	20		
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			
	K _{rw} 0.0 0.002 0.009 0.02 0.033 0.051 0.075 0.100 0.132 0.17 0.208 0.251 0.3			
	$ \begin{array}{ $		CO4	
Q12	bl/stb; Formation thickness $h = 40$ ft; Cross-sectional area $A = 26400$ ft ² ; Porosity = 0.18;			
	Injection rate $i_w = 900$ bbl/day; Distance between producer and injector L = 600 ft; Oil			
	viscosity = 5.0 cp; Water viscosity = 0.5 cp; Dip angle = 0° ; Connate water saturation S _{wc}			
	= 0.2; Initial water saturation S_{wi} = 0.20; Residual water saturation S_{or} = 0.2.			
	Calculate and plot the water saturation profile after 120 days.			