UNIVERSITY OF PETROLEUM AND ENERGY STUDIES
 Supplementary Examination, Dec 2020

Course: Process Optimization (Elective) Semester: VI
Program: B. Tech. Chemical Engg. (spl. RP); CE-RP
Course Code: CHCE3020 (Elective)

Time: 3 Hrs
Max. Marks: 100

No. of pages: 3
INSTRUCTIONS: In this OPEN BOOK(S) (any number of books and kind) and NOTES EXAM, you are allowed to have any books, all handouts provided (including your textbook in xeroxed form), your own class-notes and your solutions to assignment problems, etc.

1. Show all intermediate steps of your answers (and not just the final answers) to earn marks
2. Please answer the questions in the sequence: 1, 2, 3. You can do this by assigning, a priori, a few pages to each question, in the correct sequence. You may then answer the questions in whatever sequence you wish to, all parts in one place

Section A: ANSWER ALL $2 \times 30=60$ Marks
Q. 1 Find the optimum value of the radius, r, and height, h, of a cylinder (as shown in the diagram on the next page) which can be fully inscribed within a sphere of radius, 10 m .

The optimum cylinder should have the maximum volume.

(30 Points)
Q. 2 We wish to minimize

$$
\operatorname{Min} f\left(x_{1}, x_{2}\right) \equiv\left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2}
$$

with the equality constraint

$$
g_{1}\left(x_{1}, x_{2}, x_{3}\right) \equiv x_{1}+x_{2}-x_{3}^{2}-3=0
$$

Use the penalty function technique with v as the penalty parameter to
(a) write the expression for the function, F, incorporating the constraint
(b) deduce all the equations for optimality
(c) solve these equations taking $x_{3}=0$ (this leaves only three equations in three variables)
(d) Solve these equations to give x_{1} and x_{2}
(e) Can you get a value of u

Section B: ANSWER ALL $1 \times 40=40$ Marks

Q. 1 (Open-ended Problem again, possibly with several solutions)

We would like to solve the TSP (Travelling Salesman Problem) discussed in the Lecture using GA (and in Chapter 5 of the book), with Headquarter as Node 1, and five additional nodes/shops numbered $2,3,4,5$ and 6 , as shown in the diagram below, using Single-

Objective Simulated Annealing (SSA).

Develop the algorithm you would use to minimize the total distance covered by the salesman from Node 1 and back to node 1 with the standard assumptions of the TSP. The coordinates, $x_{\mathrm{i}}, y_{\mathrm{i}}$, are given for each node.

