Name: Enrolment No:			
\left.UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, December 2020 $\right]$Course: Flight Mechanics I Semester: V Program: B. Tech ASE/ASE+AVE Time 03 hrs. Course Code: ASEG 3001 Max. Marks: 100 Instructions: a) All questions are compulsory. b) Assume any suitable value for the missing data			
SECTION A			
S. No.		Marks	CO
Q 1	Calculate pressure, temperature, density of the air at geopotential altitude of 18 kms . Assume sea level conditions at 0 km .	5	CO1
Q2.	At sea level, the total drag of an aircraft of mass 6500 kg is 7.0 kN at a speed of 195 knots. Calculate the rate of climb and angle of climb at an indicated airspeed of 170 knots at 12000 ft , if the power available is 980 kW and the relative air density is 0.859 .	5	$\mathrm{CO4}$
Q3	If an airplane is flying at an altitude where the actual temperature and pressure are 255.7 K and $4.72 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}$, respectively. What are the pressure temperature and density altitudes?	5	CO1
Q4.	Lift to drag ratio of a glider is 14 . If it is taken to an altitude of 3 km and released, its descent angle would be(in degrees)	5	CO4
Q5	i). A propeller driven aircraft takes off with 10% less fuel than usual. What happens to its range? (3M) a) Decreases by 10% b) Decreases by more than 10% c) Decreases by less than 10% d) Data is insufficient ii). What happens to the range if the aircraft in above question was a jet aircraft? (2M) a) Decreases by 10% b) Decreases by more than 10% c) Decreases by less than 10% d) Data is insufficient	5	CO4
Q6	State the need of using "Standard Atmosphere" in flight mechanics.	5	CO1
SECTION B			

Q 7	Consider an airplane patterned after the twin-engine Beechcraft Queen Air executive transport. The airplane weight is $38,220 \mathrm{~N}$, wing area is $27.3 \mathrm{~m}^{2}$, aspect ratio is 7.5 , Oswald efficiency factor is 0.9 , and parasite drag coefficient $C_{D, 0}=0.04$. Calculate the thrust required to fly at a velocity of $340 \mathrm{~km} / \mathrm{h}$ at (a) standard sea level and (b) an altitude of 6 km .	10	$\mathrm{CO3}$
Q8.	Liftoff distance for a given aircraft of weight W is $\mathrm{S}_{\mathrm{L} \circ}$. If the takeoff weight is reduced by 10%, calculate the magnitude of percentage change in the lift off distance.	10	$\mathrm{CO5}$
Q9.	Explain about delta wing aerodynamics in subsonic and supersonic speeds respectively. OR Justify the use of sweptback wings in passenger aircrafts over rectangular wing. Also, discuss the effect of aspect ratio, wing twist, wing planform and taper ratio on aerodynamic characteristics of a subsonic aircraft.	10	CO 2
Q10.	Derive the equation of motion for a climbing and accelerated flight. In addition, simplify it for steady and level flight condition. Use the appropriate diagram.	10	CO4
Q11.	Lift-off distance is very sensitive to the weight of the airplane, varying directly as W^{2}. Justify the statement by deriving the Lift off distance expression.	10	$\mathrm{CO5}$
SECTION-C			
Q12	Consider an airplane patterned after the Fairchild Republic A-10, a twin-jet attack aircraft. The airplane has the following characteristics: wing area $=47 \mathrm{~m}$, aspect ratio $=6.5$, Oswald efficiency factor $=0.87$, weight $=103.047 \mathrm{~N}$. and parasite drag coefficient $=0.032$. The airplane is equipped with two jet engines with $40,298 \mathrm{~N}$ of static thrusts each at sea level. Assume a paved runway also, during the ground roll, the angle of attack is restricted by the requirement that the tail not drag the ground. Hence, assume $\mathrm{C}_{\text {Lmax }}$ during the ground roll is limited to 0.8 . Also, when the airplane is on the ground, the wings are 5 ft above the ground. Estimate the sea-level lift-off distance for the airplane. OR An airplane weighing 13250 N is powered by a single piston engine delivering 230 BHP at all altitudes. Its SFC is $0.2 \mathrm{~kg} /(\mathrm{hp}-\mathrm{h})$. Other parameters of interest are wing span $\mathrm{b}=11 \mathrm{~m}$, wing area $\mathrm{S}=16.2 \mathrm{~m}^{2}, \mathrm{C}_{\mathrm{Do}}=0.025, \mathrm{e}=0.8$, propeller efficiency $=0.85$. If this airplane is required to fly nonstop over a distance of 1850 km , determine the fuel load to be carried for this case.	20	$\mathrm{CO5}$

