Name:

Enrolment No: Roll No.

Time 04 hrs.

Max. Marks: 100

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester/ Supplementary Examination, December 2020

Course: Design of Machine Elements Semester: Vth Sem

Program: B.Tech. Mechatronics / ADE /Mechanical Course Code: MECH3001/ IPEG325/ADEG225

Instructions:

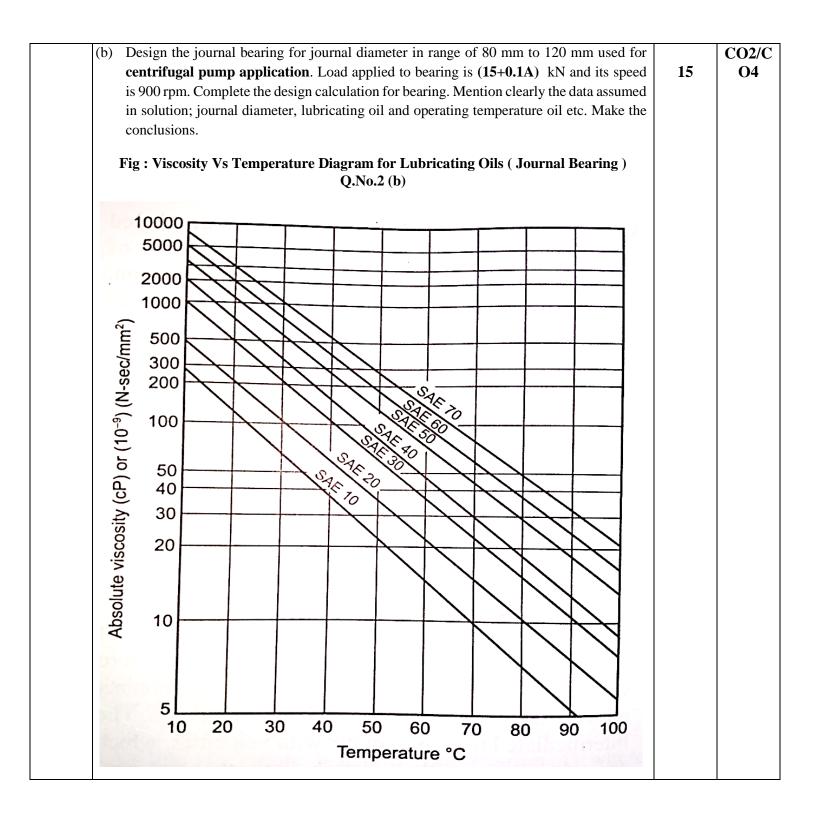
1. Use of Design Data Handbook is allowed during the examination.

2. Assume the suitable data and mention in solution at start.

3. Draw the necessary diagrams.

Note:

- 1. Read the instruction carefully before attempting.
- 2. This question paper has 2 Sections: Section A and Section B.
- 3. There are total 4 questions of Scan and upload type in Section A /B.
- 4. **Both the sections** consist of design problems related to machine components.


5. A is last 2 digit of your roll no.

- 6. **Examination** will be conducted online on CODETANTRA platform.
- 7. Write the answer over A4 sheet and mention clearly the page number at the top. After the completion of the Section A and B, scan and upload online through CODETANTRA platform.

<u>Section – A (Attempt all the questions)</u>

S. No.	Statement of question	Marks	CO					
SECTION A								
Q 1	A shaft made of steel C40 is used to transmit (8+ 0.1 A) kW at 1440 rpm. A pulley mounted on the shaft has a diameter of 0.4 m and ratio of belt tensions is 3, as given in figure below. The teeth on gear of 250 mm pitch circle diameter has a 20° involute profile. Assume the equal torque on gear and pulley, design the shaft by using the ASME code. Draw the applicable force diagrams, Bending moment diagrams etc.	20	CO2/ CO4					

	Pulley B ₁ 200 mm B 500 m	Gear B ₂ F _r	F_r T_1 T_2		
Q 2	Design a riveted Joint in we the inner rows. Diameter of pressure of 2.0 N/mm ² . Co 135 MPa in compression, at Determine the dimension of The power to be transmitted materials for the parts of the	$\sigma_{ m c} = egin{array}{c} { m cnal} \\ { m cc} & { m cnal} \\ { m aft.} \end{array}$	CO3		
	Section B				
Q 1	Design a pair of spur gear using the data given in the table below to transmit (10+0.1 A) kW of power available at pinion for speed reduction ratio of 4: 1. Consider the speed of pinion as 1000 rpm.				
	Detail Material	Pinion Steel C40 Untreated	Gear Steel C40 Untreated		
	Design Stress	207 MPa	233.4Mpa	30	CO4
	BHN	150	200		004
	Tooth Profile	20 ⁰ Involute	20 ° Involute		
Q 2	Assume the centre distance and design the gear from static and dynamic point of view. Suggest the BHN for designed gear. Also make your conclusions.				CO2/C O4
	Assume the uniform and steady load. Write the other assumptions clearly. Suggest the shaft diameter.				

