Name: Enrolment No:			
\left.UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2020 $\right]$Semester: V Course: Vehicle Dynamics Course Code: MEAD3001/ADEG364 Program: B.Tech-ADE			
SECTION A			
S. No.	Question Statement	Marks	CO
Q 1	Explain critical damping and give some examples where it is used.	5	CO1
Q 2	Describe the tilting angle of a vehicle moving uphill.	5	CO2
Q 3	Differentiate between radial-ply tires and bias-ply tires.	5	CO3
Q 4	Describe anti-lock braking system (ABS).	5	CO2
Q 5	List out the sources of noise and vibration in a vehicle.	5	CO5
Q 6	Explain the Ackerman condition for low speed turning.	5	CO4
SECTION B			
Q 7	Determine the equivalent stiffness and mass matrix of the system shown in Figure when x, the displacement of disc measured from equilibrium is used as generalized coordinates. Assume the disk is thin and rolls without slip.	10	CO1

Q 8	Discuss the effect of changing grip coefficient on the braking performance of a vehicle.	10	CO 2
Q 9	Use the tire brush model to prove that for pure lateral slip, $=1-\theta_{y} \tan \alpha$.	10	CO3
Q 10	Determine the pitch and bounce frequencies of an automobile with the following data, Mass $(m)=1000 \mathrm{~kg}$ Radius of gyration $(r)=0.9 \mathrm{~m}$ Distance between front axle and C.G. $=1.0 \mathrm{~m}$ Distance between rear axle and C.G. $=1.5 \mathrm{~m}$ Front spring stiffness $\left(k_{f}\right)=18 \mathrm{kN} / \mathrm{m}$ Rear spring stiffness $\left(k_{r}\right)=22 \mathrm{kN} / \mathrm{m}$	10	$\mathrm{CO5}$
Q 11	Discuss in detail the understeer and oversteer conditions.	10	CO4
SECTION-C			
Q 12	For a rear-wheel-drive car pulling a trailer with the following characteristics: $l=2272 \mathrm{~mm}, w=1457 \mathrm{~mm}, h=230 \mathrm{~mm}, a_{l}=a_{2}, h_{1}=310 \mathrm{~mm}, b_{1}=680 \mathrm{~mm}, b_{2}=$ $610 \mathrm{~mm}, b_{3}=120 \mathrm{~mm}, h_{2}=560 \mathrm{~mm}, m=1500 \mathrm{~kg}, m_{t}=150 \mathrm{~kg}, \mu=1, \varphi=10 \mathrm{deg}, a=$ $1 \mathrm{~m} / \mathrm{s}^{2}$. Find the tire forces and the maximum angle of acceleration. OR Derive the expression of lateral acceleration using the enhanced rollover model and calculate the same for a vehicle with $m=13000 \mathrm{~kg}$, the radial stiffness of tire $C_{R}=$ $800000 \mathrm{~N} / \mathrm{m}$, the rolling stiffness $k_{\varphi}=127.53 \mathrm{kN}-\mathrm{m}, w=2 \mathrm{~m}, h_{l}=0.8 \mathrm{~m}$ and $h_{2}=1.0$ m.	20	CO6

