Name: Enrolment No:		
Course: Program Course	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, December 2020 Nuclear and Particle Physics Semester: V : BSc Physics (Hons.) Time 03 hrs. Code: PHYS3012 Max. Marks: 100	
SECTION A 1. Each Question will carry 5 Marks 2. Instruction: Complete the statement / Select the correct answer(s)		
S. No.	Question	CO
Q 1. (a) (b)	The isotones are the nuclei having (i) same number of neutrons (ii) same atomic mass (iii) same number of protons (iv) same mass number The ratio of the nuclear radii of ${ }^{27} \mathrm{Al}$ to that of the ${ }^{125} \mathrm{Tl}$ is . \qquad	CO1
Q2. (a) (b)	The numerical value of binding energy of deuteron is \qquad The nuclear force is of \qquad range, \qquad dependent and \qquad independent.	C01
Q3. (a) (b)	According to the Shell model the spin and parity of ${ }^{17} \mathrm{O}$ is \qquad and \qquad . In liquid drop model the surface energy term is proportional to mass number as (i) A (ii) $\mathrm{A}^{1 / 3}$ (iii) $A^{-1 / 3}$ (iv) $A^{2 / 3}$	CO 2
Q4.	Select all the correct statements (i) The magnetic moment of a neutron is zero, as it is charge neutral (ii) The binding energy curve can be used to describe nuclear fission and fusion. (iii) The top quark is the heaviest quark. (iv) Cockcroft Walton accelerator is an electrostatic type accelerator. (v) The most abundant element in universe is iron.	CO4
Q5.	The particle physics reactions which are allowed as per Lepton number conservation are [5] (i) $p \rightarrow n+e^{+}+v_{e}$ (ii) $\mu^{+} \rightarrow e^{+}+v_{e}+\bar{v}_{\mu}$ (iii) $p+e^{-} \rightarrow n+v_{e}$ (iv) $K^{-} \rightarrow \mu^{-}+\bar{v}_{\mu}$ (v) $n \rightarrow p+e^{-}+v_{e}$	CO3
Q.6.	The possible multipole γ ray transitions for following pair of nuclear states will be (i) $3^{-} \rightarrow 2^{+}$ (ii) $(1 / 2)^{-} \rightarrow(1 / 2)^{+}$	CO 3

SECTION B

1. Each question will carry $\mathbf{1 0}$ marks
2. Instruction: Answer the following questions in $\mathbf{2 0 0}$ words

Q 7	Write short notes on (i) elementary particles (ii) GM counter	$\mathbf{C O 1}$
Q.8.	${ }^{13} \mathrm{~N}$ is a positron emitter with an end point energy of 1.2 MeV . Determine the threshold of the reaction $p+13 \mathrm{C} \rightarrow 13 \mathrm{~N}+n$, if the neutron - hydrogen atom mass difference is 0.78 MeV.	$\mathbf{C O 2}$
Q.9.	Briefly describe the r-process and the s-process for synthesis of heavy elements	$\mathbf{C O 4}$
Q.10.	A radioactive substance of half-life 100 days which emits β-particles of average energy 5×10^{-7} ergs is used to drive a thermoelectric cell. Assuming the cell to have an efficiency 10%, calculate the amount (in gram-molecules) of radioactive substance required to generate 5 W of electricity.	$\mathbf{C O 4}$
Q.11.	Explain the principle, construction and working of a cyclotron	$\mathbf{C O 3}$

Section C

1. Attempt any one.
2. Instruction: Answer the following questions in about $\mathbf{4 0 0}$ words.
$\left.\begin{array}{l}\text { Q12. (a) Describe the different processes through which gamma ray interact with matter. } \\ \text { (b) Describe the Semi empirical mass formula. The binding energy of an element is } 64 \mathrm{MeV} \text {, } \\ \text { Binding energy per nucleon is } 6.39 \mathrm{MeV} \text {. What is the total number of neutrons and protons in the } \\ \text { nucleus? }\end{array}\right] \quad \mathbf{C O 3}$ [10]
