Name:					
Enrolment No:		UNIVERSITY WITH A PURPOSE			
Program	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, December 2020Course: Nuclear and Particle PhysicsSemester: VProgram: BSc Physics (Hons.)Time 03 hrs.Course Code: PHYS3012Max. Marks: 100				
	S Cach Question will carry 5 Marks Instruction: Complete the statement / Sele	SECTION A ect the correct answer(s)			
S. No.	Question			СО	
Q 1. (a)	The isotones are the nuclei having (i) same number of neutrons (ii) same atomic mass (iii) same number of protons (iv) same mass number		[2]	C01	
(b)	The ratio of the nuclear radii of ²⁷ Al to tha	t of the 125 Tl is	[3]		
Q2. (a)	The numerical value of binding energy of	deuteron is	[2]		
(b)	The nuclear force is of range,	_ dependent and independent.	[3]	C01	
Q3. (a)	According to the Shell model the spin and	I parity of 17 O is and	[3]		
(b)	In liquid drop model the surface energy te (i) A (ii) $A^{1/3}$ (iii) $A^{-1/3}$ (iv) $A^{2/3}$	erm is proportional to mass number as	[2]	CO2	
Q4.	Select all the correct statements (i) The magnetic moment of a neutron	used to describe nuclear fission and fusion. k. n electrostatic type accelerator.	[5]	CO4	
Q5.		llowed as per Lepton number conservation are	[5]	CO3	
Q.6.	The possible multipole γ ray transitions for (i) $3^- \rightarrow 2^+$ (ii) $(\frac{1}{2})^- \rightarrow (\frac{1}{2})^+$	or ronowing pair of nuclear states will be	[5]	CO3	

	SECTION B			
1.]	Each question will carry 10 marks			
2. Instruction: Answer the following questions in 200 words				
Q 7	Write short notes on	CO1		
	(i) elementary particles			
<u> </u>	(ii) GM counter			
Q.8.	¹³ N is a positron emitter with an end point energy of 1.2MeV. Determine the threshold of the reaction $p + 13 \text{ C} \rightarrow 13 \text{ N} + n$, if the neutron – hydrogen atom mass difference is 0.78MeV.			
Q.9.	Briefly describe the r-process and the s-process for synthesis of heavy elements			
Q.10.	0. A radioactive substance of half-life 100 days which emits β -particles of average energy 5×10^{-7} ergs is used to drive a thermoelectric cell. Assuming the cell to have an efficiency 10%, calculate the amount (in gram-molecules) of radioactive substance required to generate 5W of electricity.			
Q.11.	Explain the principle, construction and working of a cyclotron	CO3		
	Section C			
1.	Attempt any one.			
	Instruction: Answer the following questions in about 400 words.			
Q12. (a)	Describe the different processes through which gamma ray interact with matter. [10]			
(b	Describe the Semi empirical mass formula. The binding energy of an element is 64 MeV, Binding energy per nucleon is 6.39 MeV. What is the total number of neutrons and protons in the nucleus? [10]	CO3		
	OR			
	(a). Calculate th e magnetic field and the Dee radius of a cyclotron which could accelerate protons to a maximum energy of 5 MeV if the available radio frequency is of 8 MHz. [10]			
	(b). Describe the principle construction and working of LINAC. [10]			