UNIVERSITY OF PETROLEUM AND ENERGY STUDIES ONLINE END SEMESTER EXAMINATION DECEMBER 2020

Course: QUANTUM MECHANICS AND APPLICATIONS
 Course Code: PHYS 3001

Programme: BSc (H): PHYSICS
Instructions: Read the section headings carefully for Sections A, B and C

Semester: V
Max. Marks: 100
Total pages : 02

SECTION A

1. Each Question will carry 5 Marks
2. Instruction: Complete the statement / Select the correct answer(s)

Q1	i.	As the wavelength of the radiation decreases from the maximum, the intensity of the black body radiations \qquad a) Increases b) Decreases c) First increases then decrease d) First decreases then increase	CO1
	ii.	Suppose that when a scientist measured the electron, her readings had an uncertainty of $\Delta \mathrm{x}=1.0 \times 10^{-9} \mathrm{~m}$. Given the mass of this particle is $3: 5 \mathrm{x} 10^{-19} \mathrm{~kg}$ and $\hbar=1.05 \times 10^{-34} \mathrm{~m}^{2} \mathrm{~kg} / \mathrm{s}$, the smallest uncertainty that she could possibly have in her measurement for the particle's velocity is \qquad	
Q2	i.	Light of wavelength $3500 \AA$ is incident on two metals A and B. Which metal will yield more photoelectrons if their work functions are 5 eV and 2 eV respectively? a) A b) B c) A \& B d) C	CO1
	ii.	Photons of energy $4.0 \times 10^{-19} \mathrm{~J}$ cause transitions in an atom. The frequency and wavelength of such photons are \qquad and \qquad respectively. (Given $\mathrm{h}=$ $6.626 \times 10^{-34} \mathrm{Js}$).	
Q3	i.	The radiations emitted by hot bodies are called as \qquad a) X-rays b) Black-body radiation c) Gamma radiations d) Visible light	CO1
	ii.	The concept of matter wave was suggested by \qquad a) Heisenberg b) de Broglie c) Schrodinger d) Laplace	
	iii.	The function representing matter waves must be \qquad a) complex b) real c) zero d) infinity	
Q4	i.	The Schrodinger wave equation is \qquad a) Linear b) Quadratic c) Differential equation d) Derivable	CO1
	ii.	Two operators, α and β, are said to commute when \qquad a) $\alpha=\beta$ b) $\alpha+\beta=0$ c) $\alpha \beta=\beta \alpha$ d) $\alpha^{2}=\beta^{2}$	

	iii.	What is Compton shift? a) Shift in intensity b) Shift in charges c) Shift in radiation d) Shift in wavelength	
Q5	i.	An operator representing observable dynamical variable has \qquad value. a) always b) infinite c) real d) imaginary	CO 2
	ii.	Position operator in a momentum space is given by $\mathrm{r}_{\mathrm{op}}=$ \qquad (a) $i \hbar \nabla p$ (b) $i \hbar \mathrm{r}_{\mathrm{op}}$ (c) $i \frac{\partial}{\partial x}+j \frac{\partial}{\partial y}+k \frac{\partial}{\partial z}$ (d) $\left(2 \mathrm{~m} / \mathrm{h}^{2}\right) \nabla$	
Q6		If there exist only one eigen function corresponding to a given eigen value, then the eigen value is called a) Non degenerate b) degenerate c) discrete d) continuum	CO2
	ii.	If the particle moving in a \qquad potential then the solutions of the wave equation are describe as a stationary states a) time independent b) time dependent c) velocity dependent d) velocity independent	
		If there exist more than one eigen function corresponding to a given eigen value, then the eigen value is called \qquad a) Non degenerate b) degenerate c) discrete d) continuum	

SECTION B

1. Each question will carry $\mathbf{1 0}$ marks

2. Instruction: Write short / brief notes

Q7	Consider the SHO (Simple Harmonic Oscillator) problem in quantum physics. Compare its results with those obtained in classical physics.	CO 3
Q8	Describe the famous Stern-Gerlach experiment. Expound the significance of its results.	CO 4
Q9	Explain the concept of indistinguishability of particles in Quantum Mechanics. Apply the concept to understand Symmetric and Antisymmetric wave functions.	CO 4
Q10	What are Spin orbit couplings? What are they used for?	CO 4
Q11	Write short note on Momentum space and momentum wave functions.	CO 2

Section C

1. Each Question carries 20 Marks.
2. Instruction: Write long answer.

Q12 \quad Give the Quantum theory of Hydrogen atom. [Hint: Write down the Schrodinger equation for hydrogen atom, and using appropriate physical conditions solve it. Give out the quantum numbers involved and interpret the solutions in your own language. ©]

OR

a. What are associated Laguerre, zenithal and azimuthal angular equations for the hydrogen atom? Describe their solutions in detail.
b. Give the complete set of quantum numbers for an atom. Describe each quantum number and the values it can take.

