UNIVERSITY OF PETROLEUM AND ENERGY STUDIES ONLINE END SEMESTER EXAMINATION DECEMBER 2020

Course:	•	ANTUM MECHANICS AND APPLICATIONS Semester:	V	
Course Code: PHYS 3001				
Programme: BSc (H): PHYSICSMax. Marks:				
Instruct	tions: Read	d the section headings carefully for Sections A, B and C Total pages	: 02	
		SECTION A		
1. Each	Question	will carry 5 Marks		
2. Instru	uction: Co	mplete the statement / Select the correct answer(s)		
Q1	i.	As the wavelength of the radiation decreases from the maximum, the intensity of		
		the black body radiations		
		a) Increases b) Decreases c) First increases then decrease		
		d) First decreases then increase	CO1	
	ii.	Suppose that when a scientist measured the electron, her readings had an uncertainty	CO1	
		of $\Delta x = 1.0 \times 10^{-9}$ m. Given the mass of this particle is 3:5 x 10 ⁻¹⁹ kg and		
		$\hbar = 1.05 \text{ x } 10^{-34} \text{ m}^2\text{kg/s}$, the smallest uncertainty that she could possibly have in her		
		measurement for the particle's velocity is		
Q2	i.	Light of wavelength 3500 Å is incident on two metals A and B. Which metal will		
		yield more photoelectrons if their work functions are 5 eV and 2 eV respectively?		
		a) A b) B c) A & B d) C		
	ii.	a) Ab) Bc) A & Bd) CPhotons of energy 4.0 x 10 ⁻¹⁹ J cause transitions in an atom. The frequency and	CO1	
		wavelength of such photons are and respectively. (Given h =		
		6.626 x 10 ⁻³⁴ Js).		
Q3	i.	The radiations emitted by hot bodies are called as		
		a) X-rays b) Black-body radiation c) Gamma radiations d) Visible light		
	ii.	The concept of matter wave was suggested by		
	11.		CO1	
		a) Heisenberg b) de Broglie c) Schrodinger d) Laplace		
	iii.	The function representing matter waves must be		
		a) complex b) real c) zero d) infinity		
Q4	i.	The Schrodinger wave equation is		
-		a) Linear b) Quadratic c) Differential equation d) Derivable		
			CO1	
	ii.	Two operators, α and β , are said to commute when	001	
		a) $\alpha = \beta$ b) $\alpha + \beta = 0$ c) $\alpha\beta = \beta\alpha$ d) $\alpha^2 = \beta^2$		

	iii. What is Compton shift?a) Shift in intensityb) Shift in chargesc) Shift in radiationd) Shift in wavelength		
Q5	i. An operator representing observable dynamical variable has value. a) always b) infinite c) real d) imaginary		
	ii. Position operator in a momentum space is given by $r_{op} = $ (a) $i\hbar\nabla p$ (b) $i\hbar r_{op}$ (c) $i\frac{\partial}{\partial x} + j\frac{\partial}{\partial y} + k\frac{\partial}{\partial z}$ (d) $(2m/\hbar^2)\nabla$	CO2	
Q6	i.If there exist only one eigen function corresponding to a given eigen value, then the eigen value is called a) Non degenerateb) degeneratec) discreted) continuum		
	 ii. If the particle moving in a potential then the solutions of the wave equation are describe as a stationary states a) time independent b) time dependent c) velocity dependent d) velocity independent 	CO2	
	iii.If there exist more than one eigen function corresponding to a given eigen value, then the eigen value is called a) Non degenerated) continuum		
	SECTION B question will carry 10 marks uction: Write short / brief notes		
Q7	Consider the SHO (Simple Harmonic Oscillator) problem in quantum physics. Compare its results with those obtained in classical physics.	CO3	
Q8	Describe the famous Stern-Gerlach experiment. Expound the significance of its results.	CO4	
Q9	Explain the concept of indistinguishability of particles in Quantum Mechanics. Apply the concept to understand Symmetric and Antisymmetric wave functions.	CO4	
Q10	What are Spin orbit couplings? What are they used for?	CO4	
Q10 Q11	Write short note on Momentum space and momentum wave functions.	CO4	
Q11	Section C	002	
	Question carries 20 Marks. uction: Write long answer.		
Q12	Give the Quantum theory of Hydrogen atom. [Hint: Write down the Schrodinger equation for		
L	hydrogen atom, and using appropriate physical conditions solve it. Give out the quantum		
	numbers involved and interpret the solutions in your own language. ©]		
	OR	CO3	
	a. What are associated Laguerre, zenithal and azimuthal angular equations for the hydrogen atom? Describe their solutions in detail.b. Give the complete set of quantum numbers for an atom. Describe each		
	quantum number and the values it can take.		