Name: Enrolment No:		UNIVERSITY WITH A PURPOSE		
		ROLEUM AND ENERGY STUDIES		
Program: B.Sc. (Hons.) Mathematics Time		xamination, December 2020 Semester: Time : 03 Max. Mark	03 hrs.	
Instruc	ctions: All questions are compulsory.			
2.	Each question carries 5 marks. Complete the statement / Select the corre	SECTION A ct answers(s).		
S. No. Q1	Which of the following numbers can be the doesn't fix any symbol? a. 18 b. 30 c. 15 d. 28	possible order(s) of a permutation on 11 symbols which	CO1	
Q2	Let $G = \mathbb{Z}_{10} \bigoplus \mathbb{Z}_{15}$. Then a. <i>G</i> contains exactly one element of order b. <i>G</i> contains exactly 5 elements of order c. <i>G</i> contains exactly 24 elements of order d. <i>G</i> contains exactly 24 elements of order	3 r 5	CO2	
Q3	Let G be a group of order 15. Then the num	mber of Sylow subgroups of <i>G</i> of order 3 is	CO5	
Q4	Which of the following can be a possible of a. $1 + 1 + 1 + 2 + 5 = 10$ b. $1 + 2 + 3 + 4 = 10$ c. $1 + 2 + 2 + 5 = 10$ d. $1 + 1 + 2 + 2 + 2 + 2 = 10$	lass equation of a group of order 10?	CO5	
Q5	The maximum order of an element in grou	p $U(8) \oplus S_3 \oplus \mathbb{Z}_{10}$ is	CO3	
Q6	The set of all real 2×2 invertible matrice orbits for this group action is	es acts on \mathbb{R}^2 by matrix multiplication. The number of	CO4	

	SECTION B	
1.	Each question carries 10 marks.	
2.	There is an internal choice in Q11.	•
Q7	Let $U(n)$ denotes the group of units in \mathbb{Z}_n . Show that $U(55)^3 = \{x^3 x \in U(55)\}$ is $U(55)$.	CO1
Q8	Let $< \alpha >$ denotes the group generated by element α of group <i>G</i> . Find three cyclic subgroups of maximum possible order in $\mathbb{Z}_6 \oplus \mathbb{Z}_{10} \oplus \mathbb{Z}_{15}$ of the form $< a > \oplus < b > \oplus < c >$, where $a \in \mathbb{Z}_6$, $b \in \mathbb{Z}_{10}$ and $c \in \mathbb{Z}_{15}$.	
Q9	Consider the symmetric group S_3 on symbols 1,2 and 3. If <i>H</i> and <i>K</i> are subgroups generated by the cycles (1 2 3) and (1 2) respectively. Prove or disapprove the following: $S_3 = H \times K$ where the symbol ' ×' represents the internal direct product.	
Q10	Let G be a non-abelian group of order 343 such that the center $Z(G)$ is non-trivial. Prove that $ Z(G) = 7$.	
Q11	OR For an action of a group <i>G</i> on set <i>A</i> , define the normalizer of set <i>A</i> as: $N_G(A) = \{g \in G gag^{-1} \in A \forall a \in A\}$ Prove that $N_G(A_3) = A_3$, where A_3 is subgroup of all even permutations of symmetric group	
1. 2.	SECTION-C Q12 carries (10+10) marks. There is an internal choice in Q12.	
Q 12	 a. Let G be a finite group acting on itself by conjugation. If g_i ∈ G and Z(G) denotes the center of G then establish the result: G = Z(G) + ∑_{i=1}^k G:C_G(g_i) where C_G(x) is the centralizer of element x in G. b. If C he a non-abalian group of order 142. Determine its class equation 	
	b. If <i>G</i> be a non-abelian group of order 143. Determine its class equation. OR	
	 a. Consider the symmetric group S₄ on four symbols. Find all the conjugacy classes of S₄ by using the combinatorics on the cycle types in it. b. Use class equation to prove that the center of S₄ is trivial. 	