Name: Enrolment No:									
	TI	IVEDOITV							
Program: B.Sc. (Hons.) Mathematics Time					Semester: Time :	er: V : 03 hrs. 1arks: 100			
		compuisor yr s		TION A					
S. No.							Marks	СО	
Q1	The smallest positive ro	ot of $x^3 - 5x + 3$	3 = 0 by Newt	on Raphso	n Method.				
	 A. 0.65678 B. 6.5678 C. 0.56768 D. 5.6768 						5	CO1	
Q2	Real positive root of equations by Bisection Method correct upto 3 decimalPlaces for the équation $x^3 - 4x + 9 = 0$ isA.2.594B.3.923C.2.706D.3.796						5	CO1	
Q3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	50 5	re 55 2.0	60	65 -2.4		5	CO2	
Q4	Evaluate $\Delta^{10}[(1-ax)(1-bx^2)(1-cx^3)(1-dx^4)$ A. abcd B. abcd (24) C. abcd (10!) D. (abcd)^{10}					5	CO2		
Q5	By Trapezoidal rule \int_0^6 E. 1.4108 F. 1.1408 G. 1.4308 H. 1.3408	$\frac{1}{1+x^2}dx$ using 6	intervals is				5	CO3	
Q6	Using Euler's method c with initial condition y($\frac{dy}{dx} = x + \frac{1}{2}$	-	nat		5	CO5	

A. 1.10 B. 1.11 C. 1.22 D. 1.20SECTION BQ7Differentiate between round off error and truncation error with help of example. The diameter and altitude of a can in the shape of a right circular cylinder are measured 4cm and 6cm respectively. The possible error in each measurement is 0.1cm. Find approximately the maximum possible error in computation of its volume.10Q8Using Newton Divided Difference formula find the polynomial $f(x)$ with the help of following table and evaluate $f(1)$ 10 \overline{x} 4 $\cdot 1$ 0 2 Q9Solve the following using Gauss Elimination Method. $2x_1 + 20x_2 - 2x_3 = -44$ $10x_1 + 2x_2 + x_3 = 9$ 10Q10 $x = 0$ and $x = 1$ and a curve through the points with the following coordinates:10Q10 $x = 0$ and $x = 1$ and a curve through the points with the following coordinates:10Q11Use fourth order Runge-Kutta method to solve for $y(1.2)$, considering step-length $h = 0.1$, given that $\frac{dy}{dx} = 1 + y^2$, with initial condition $y(1) = 1.5$.0R10Q12Evaluate $\int_1^2 \int_2^3 e^{x+y} dxdy$ using composite 1/3 Simpson Rule and compare with exact solution. OR 10Q12Evaluate $\int_1^2 \int_2^3 e^{x+y} dxdy$ using composite 1/3 Simpson Rule and compare with exact solution. OR 20Q12Evaluate $\int_1^2 \int_2^3 e^{x+y} dxdy$ using composite 1/3 Simpson Rule and compare with exact solution. OR 20Q12Evaluate $\int_1^2 \int_2^3 e^{x+y} dxdy$ using composite 1/3 Simpson Rule and compare with exact solution. OR 20	
C. 1.22 D. 1.20SECTION BSECTION BOTHER INTERPORTION TO A SECTION BOTHER INTERPORTION TO A SECTION INTERPORT IN THE STATE ST	
SECTION BSECTION BQ7Differentiate between round off error and truncation error with help of example. The diameter and altitude of a can in the shape of a right circular cylinder are measured 4cm and 6cm respectively. The possible error in ach measurement is 0.1cm. Find approximately the maximum possible error in computation of its volume.10Q8Using Newton Divided Difference formula find the polynomial $f(x)$ with the help of following table and evaluate $f(1)$ 10Q8Using Newton Divided Difference formula find the polynomial $f(x)$ with the help of following table and evaluate $f(1)$ 10Q9Solve the following using Gauss Elimination Method. $2x_1 + 2x_2 - 2x_3 = -44$ $10x_1 + 2x_2 + x_3 = 9$ $-2x_1 + 3x_2 + 10x_3 = 22$.10Q10X solid of revolution is formed by rotating about the X-axis, the area between the x-axis, the lines $x = 0$ and $x = 1$ and a curve through the points with the following coordinates:10Q10X: $\overline{3x} - 0.00$ $y: 1.0000$ 0.250.500.751.00Q11Use fourth order Runge-Kutta method to solve for $y(1.2)$, considering step-length $h = 0.1$, given that $\frac{dy}{dx} = x^2 + y^2$, with initial condition $y(0) = 0$.SECTION-CQ12Evaluate $\int_1^2 \int_2^3 e^{x+y} dx dy$ using composite 1/3 Simpson Rule and compare with exact solution. OR A slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various values of the time t. Find the velociy and acceleration of the slider	
SECTION BOPOP INTERPORTOP INTERPORTINTERPORT	
Q7Differentiate between round off error and truncation error with help of example. The diameter and altitude of a can in the shape of a right circular cylinder are measured 4cm and 6cm respectively. The possible error in cach measurement is 0.1cm. Find approximately the maximum possible error in computation of its volume.10Q8Using Newton Divided Difference formula find the polynomial $f(x)$ with the help of following table and evaluate $f(1)$ 10 x 4 -1 0 2 5 Q9Solve the following using Gauss Elimination Method. $2x_1 + 20x_2 - 2x_3 = -44$ $10x_1 + 2x_2 + x_3 = 9$ $-2x_1 + 3x_2 + 10x_3 = 22.$ 10Q10A solid of revolution is formed by rotating about the X-axis, the area between the x-axis, the lines $x = 0$ and $x = 1$ and a curve through the points with the following coordinates:10Q11Use fourth order Runge-Kutta method to solve for $y(1.2)$, considering step-length $h = 0.1$, given that $\frac{dy}{dx} = x^2 + y^2$, with initial condition $y(1) = 1.5$. OR0R10Q12Evaluate $\int_1^2 \int_2^2 e^{x+y} dxdy$ using composite 1/3 Simpson Rule and compare with exact solution. OR2020	
and altitude of a can in the shape of a right circular cylinder are measured 4cm and 6cm respectively. The possible error in each measurement is 0.1cm. Find approximately the maximum possible error in computation of its volume. Q8 Using Newton Divided Difference formula find the polynomial $f(x)$ with the help of following table and evaluate $f(1)$ $\hline x 4 1 0 2 5 10^{-1}$ f(x) 1245 33 5 9 1335 Q9 Solve the following using Gauss Elimination Method. $2x_1 + 20x_2 - 2x_3 = -44$ $10x_1 + 2x_2 + x_3 = 9$ $-2x_1 + 3x_2 + 10x_3 = 22.$ Q10 A solid of revolution is formed by rotating about the X-axis, the area between the x-axis, the lines $x = 0$ and $x = 1$ and a curve through the points with the following coordinates: $\hline x = 0$ and $x = 1$ and a curve through the points with the following step-length $h = 0.1$, given that $\frac{dy}{dx} = x^2 + y^2$, with initial condition $y(1) = 1.5$. OR 10 Use Modified Euler's method to solve for $y(0.4)$, considering step-length $h = 0.2$, given that $\frac{dy}{dx} = 1 + y^2$, with initial condition $y(0) = 0$. Q12 Evaluate $\int_1^2 \int_2^2 e^{x+y} dx dy$ using composite 1/3 Simpson Rule and compare with exact solution. OR A slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various values of the time t. Find the velocity and acceleration of the slider when i):= 20	
1010Q8Using Newton Divided Difference formula find the polynomial $f(x)$ with the help of following table and evaluate $f(1)$ 10Q9Solve the following using Gauss Elimination Method.Q9Solve the following using Gauss Elimination Method.Q10 $2x_1 + 20x_2 - 2x_3 = -44$ $10x_1 + 2x_2 + x_3 = 9$ $-2x_1 + 3x_2 + 10x_3 = 22$.Q10A solid of revolution is formed by rotating about the X-axis, the area between the x-axis, the lines $x = 0$ and $x = 1$ and a curve through the points with the following coordinates:Q10List introduction is formed by rotating about the X-axis, the area between the x-axis, the lines $x = 0$ and $x = 1$ and a curve through the points with the following coordinates:Q11Use fourth order Runge-Kutta method to solve for $y(1.2)$, considering step-length $h = 0.1$, given that $\frac{dy}{dx} = x^2 + y^2$, with initial condition $y(1) = 1.5$. ORIOSECTION-CQ 12Evaluate $\int_1^2 \int_2^3 e^{x+y} dx dy$ using composite 1/3 Simpson Rule and compare with exact solution. OR A slider in a machine moves along a fixed straight rod. Its distance x cm along the rol is given below for various values of the time t. Find the velocity and acceleration of the slider when i): = 20	
table and evaluate $f(1)$ 10 x -4 -1 0 2 5 9 1335 10 Q^9 Solve the following using Gauss Elimination Method. Q^9 Solve the following using Gauss Elimination Method. $Q10$ A solid of revolution is formed by rotating about the X-axis, the area between the x-axis, the lines $x = 0$ and $x = 1$ and a curve through the points with the following coordinates: 10 $Q10$ A solid of revolution is formed by rotating about the X-axis, the area between the x-axis, the lines $x = 0$ and $x = 1$ and a curve through the points with the following coordinates: 10 $Q10$ X: $1 \cdot 30.00$ 0.25 0.50 0.75 1.00 $Use fourth order Runge-Kutta method to solve for y(1.2), considering step-length h = 0.1, given thatthat\frac{dy}{dx} = x^2 + y^2,with initial condition y(1) = 1.5.OR10Use Modified Euler's method to solve for y(0.4), considering step-length h = 0.2, given that\frac{dy}{dx} = 1 + y^2,with initial condition y(0) = 0.OR10VerthereQ12Evaluate \int_{1}^{2} \int_{2}^{3} e^{x+y} dx dy using composite 1/3 Simpson Rule and compare with exact solution.ORA slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is givenbelow for various values of the time t. Find the velocity and acceleration of the slider when i): =20$	CO1
x4-102510f(x)12453359133510Q9Solve the following using Gauss Elimination Method. $2x_1 + 20x_2 - 2x_3 = -44$ $10x_1 + 2x_2 + x_3 = 9$ $-2x_1 + 3x_2 + 10x_3 = 22.$ 10Q10A solid of revolution is formed by rotating about the X-axis, the area between the x-axis, the lines $x = 0$ and $x = 1$ and a curve through the points with the following coordinates:10Q10 $x = 0$ and $x = 1$ and a curve through the points with the following coordinates:10Q11Use fourth order Runge-Kutta method to solve for $y(1.2)$, considering step-length $h = 0.1$, given that $\frac{dy}{dx} = x^2 + y^2$, with initial condition $y(1) = 1.5$.0R10SECTION-CQ12Evaluate $\int_1^2 \int_2^3 e^{x+y} dx dy$ using composite 1/3 Simpson Rule and compare with exact solution. OR A slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various values of the time t. Find the velocity and acceleration of the slider when i): = 2020	
f(x)124533591335Q9Solve the following using Gauss Elimination Method. $2x_1 + 20x_2 - 2x_3 = -44$ $10x_1 + 2x_2 + x_3 = 9$ $-2x_1 + 3x_2 + 10x_3 = 22.$ 10Q10A solid of revolution is formed by rotating about the X-axis, the area between the x-axis, the lines $x = 0$ and $x = 1$ and a curve through the points with the following coordinates:10Q10 $\overline{x} = 0$ and $x = 1$ and a curve through the points with the following coordinates:10 $\overline{x} = 0$ and $x = 1$ and a curve through the points with the following coordinates:10 $\overline{y}:$ 1.0000 0.25 0.50 0.75 1.00 $\overline{y}:$ 1.0000 0.9896 0.9899 0.8415 10Estimate the volume of the solid formed using Simpson's rule.Q11Use fourth order Runge-Kutta method to solve for $y(1.2)$, considering step-length $h = 0.1$, given that $\frac{dy}{dx} = x^2 + y^2$, with initial condition $y(1) = 1.5$.0R10Use Modified Euler's method to solve for $y(0.4)$, considering step-length $h = 0.2$, given that $\frac{dy}{dx} = 1 + y^2$, with initial condition $y(0) = 0$.10SECTION-CQ12Evaluate $\int_1^2 \int_2^3 e^{x+y} dx dy$ using composite 1/3 Simpson Rule and compare with exact solution. OR A slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various values of the time t. Find the velocity and acceleration of the slider when i): = 20	CO2
Q9Solve the following using Gauss Elimination Method. $2x_1 + 20x_2 - 2x_3 = -44$ $10x_1 + 2x_2 + x_3 = 9$ $-2x_1 + 3x_2 + 10x_3 = 22.$ 10Q10A solid of revolution is formed by rotating about the X-axis, the area between the x-axis, the lines $x = 0$ and $x = 1$ and a curve through the points with the following coordinates:10Q10 $x = 0$ and $x = 1$ and a curve through the points with the following coordinates:10 $x = 0$ and $x = 1$ and a curve through the points with the following coordinates:10 $x = 0$ and $x = 1$ and a curve through the points with the following coordinates:10 $x = 0$ and $x = 1$ and a curve through the points with the following coordinates:10 $x = 0$ and $x = 1$ and a curve through the points with the following coordinates:10 $x = 0$ and $x = 1$ and a curve through the points with the following coordinates:10 $x = 0$ and $x = 1$ and a curve through the points with the following coordinates:10 $x = 0$ and $x = 1$ and a curve through the points with the following coordinates:10 $x = 0$ and $x = 1$ and a curve through the points with the following coordinates:10Use fourth order Runge-Kutta method to solve for $y(1.2)$, considering step-length $h = 0.1$, given that $\frac{dy}{dx} = x^2 + y^2$,with initial condition $y(1) = 1.5$.OR10Use Modified Euler's method to solve for $y(0.4)$, considering step-length $h = 0.2$, given that $\frac{dy}{dx} = 1 + y^2$,with initial condition $y(0) = 0$.SECTION-CQ12Evaluate $\int_1^2 \int_2^3 e^{x+y} dx dy$ using composite 1/3 Simpson Rule and compare with exact solution. OR	
$2x_1 + 20x_2 - 2x_3 = -44$ $10x_1 + 2x_2 + x_3 = 9$ $-2x_1 + 3x_2 + 10x_3 = 22.$ 10Q10A solid of revolution is formed by rotating about the X-axis, the area between the x-axis, the lines $x = 0$ and $x = 1$ and a curve through the points with the following coordinates:10Q10 $x = 0$ and $x = 1$ and a curve through the points with the following coordinates:10 $x = 0$ and $x = 1$ and a curve through the points with the following coordinates:10Q11Use fourth order Runge-Kutta method to solve for $y(1.2)$, considering step-length $h = 0.1$, given that $\frac{dy}{dx} = x^2 + y^2$, with initial condition $y(1) = 1.5$. OR10Q12Evaluate $\int_1^2 \int_2^3 e^{x+y} dx dy$ using composite 1/3 Simpson Rule and compare with exact solution. OR A slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various values of the time t. Find the velocity and acceleration of the slider when i): = 2020	
$10x_1 + 2x_2 + x_3 = 9$ 10 $-2x_1 + 3x_2 + 10x_3 = 22.$ A solid of revolution is formed by rotating about the X-axis, the area between the x-axis, the lines $x = 0$ and $x = 1$ and a curve through the points with the following coordinates:10 10 $x = 0$ and $x = 1$ and a curve through the points with the following coordinates:10 $x:$ 0.00 0.25 0.50 0.75 $y:$ 1.0000 0.9896 0.9589 0.9089 0.8415 10 Estimate the volume of the solid formed using Simpson's rule.Q11Use fourth order Runge-Kutta method to solve for $y(1.2)$, considering step-length $h = 0.1$, given that $\frac{dy}{dx} = x^2 + y^2$, with initial condition $y(1) = 1.5$.0RUse Modified Euler's method to solve for $y(0.4)$, considering step-length $h = 0.2$, given that $\frac{dy}{dx} = 1 + y^2$, with initial condition $y(0) = 0$.SECTION-CSECTION-CQ12Evaluate $\int_1^2 \int_2^3 e^{x+y} dx dy$ using composite 1/3 Simpson Rule and compare with exact solution. ORORA sider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various values of the time t. Find the velocity and acceleration of the slider when i): =20	
$-2x_1 + 3x_2 + 10x_3 = 22.$ Q10A solid of revolution is formed by rotating about the X-axis, the area between the x-axis, the lines $x = 0$ and $x = 1$ and a curve through the points with the following coordinates:10Q10 $x = 0$ and $x = 1$ and a curve through the points with the following coordinates: $x = 0$ and $x = 1$ and a curve through the points with the following coordinates:10 $x = 0$ and $x = 1$ and a curve through the points with the following coordinates:10 $x = 0$ and $x = 1$ and a curve through the points with the following coordinates:10 $x = 0$ and $x = 1$ and a curve through the points with the following coordinates:10 $x = 0$ and $x = 1$ and a curve through the points with the following coordinates:10 $x = 0$ and $x = 1$ and a curve through the points with the following coordinates:10 $y = 1.0000$ 0.9896 0.9589 0.9089 0.8415 Intervalue for the solid formed using Simpson's rule.Q11Use fourth order Runge-Kutta method to solve for $y(1.2)$, considering step-length $h = 0.1$, given that $\frac{dy}{dx} = x^2 + y^2$,0R10Use Modified Euler's method to solve for $y(0.4)$, considering step-length $h = 0.2$, given that10 $\frac{dy}{dx} = 1 + y^2$,SECTION-CSECTION-CQ12Evaluate $\int_1^2 \int_2^3 e^{x+y} dx dy$ using composite 1/3 Simpson Rule and compare with exact solution. OROROROROQ12 <td>CO4</td>	CO4
Q10A solid of revolution is formed by rotating about the X-axis, the area between the x-axis, the lines $x = 0$ and $x = 1$ and a curve through the points with the following coordinates:10Q10 $x = 0$ and $x = 1$ and a curve through the points with the following coordinates:10 $x:$ 0.00 0.25 0.50 0.75 $y:$ 1.0000 0.9896 0.9589 0.9089 0.8415 Estimate the volume of the solid formed using Simpson's rule.Q11Use fourth order Runge-Kutta method to solve for $y(1.2)$, considering step-length $h = 0.1$, given that $\frac{dy}{dx} = x^2 + y^2$, with initial condition $y(1) = 1.5$. OR10Use Modified Euler's method to solve for $y(0.4)$, considering step-length $h = 0.2$, given that $\frac{dy}{dx} = 1 + y^2$, with initial condition $y(0) = 0$.10SECTION-CQ 12Evaluate $\int_1^2 \int_2^3 e^{x+y} dx dy$ using composite 1/3 Simpson Rule and compare with exact solution. OR A slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various values of the time t. Find the velocity and acceleration of the slider when i): = 2020	
Q10 $x = 0$ and $x = 1$ and a curve through the points with the following coordinates:Image: transform of the solid formed using simps of the solid formed using the s	
Image: A plane is a neglect plane value of grad plane value value of grad plane value value of the solid formed using Simpson such as a considering step-length h = 0.1, given that $\frac{dy}{dx} = x^2 + y^2$, with initial condition $y(1) = 1.5$.Image: value value of grad plane value value of grad plane value value value of grad plane value valu	
Q11y:1.00000.98960.95890.90890.841510Q11Use fourth order Runge-Kutta method to solve for $y(1.2)$, considering step-length $h = 0.1$, given that $\frac{dy}{dx} = x^2 + y^2$, with initial condition $y(1) = 1.5$.I0Use Modified Euler's method to solve for $y(0.4)$, considering step-length $h = 0.2$, given that $\frac{dy}{dx} = 1 + y^2$, with initial condition $y(0) = 0$.I0SECTION-CQ 12Evaluate $\int_1^2 \int_2^3 e^{x+y} dx dy$ using composite 1/3 Simpson Rule and compare with exact solution. OR A slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various values of the time t. Find the velocity and acceleration of the slider when $i):=$ 20	
y:1.00000.98960.95890.90890.8415Estimate the volume of the solid formed using Simpson's rule.Q11Use fourth order Runge-Kutta method to solve for $y(1.2)$, considering step-length $h = 0.1$, given that $\frac{dy}{dx} = x^2 + y^2$, with initial condition $y(1) = 1.5$.OR10Use Modified Euler's method to solve for $y(0.4)$, considering step-length $h = 0.2$, given that $\frac{dy}{dx} = 1 + y^2$, with initial condition $y(0) = 0$.SECTION-CORQ 12Evaluate $\int_{1}^{2} \int_{2}^{3} e^{x+y} dx dy$ using composite 1/3 Simpson Rule and compare with exact solution. ORORA slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various values of the time t. Find the velocity and acceleration of the slider when i): =20	
Q11Use fourth order Runge-Kutta method to solve for $y(1.2)$, considering step-length $h = 0.1$, given thatQ11Use fourth order Runge-Kutta method to solve for $y(1.2)$, considering step-length $h = 0.1$, given that $\frac{dy}{dx} = x^2 + y^2$, with initial condition $y(1) = 1.5$.ORUse Modified Euler's method to solve for $y(0.4)$, considering step-length $h = 0.2$, given that $\frac{dy}{dx} = 1 + y^2$, with initial condition $y(0) = 0$.10SECTION-CQ 12Evaluate $\int_1^2 \int_2^3 e^{x+y} dx dy$ using composite 1/3 Simpson Rule and compare with exact solution. OR A slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various values of the time t. Find the velocity and acceleration of the slider when i): =20	CO3
Q11Use fourth order Runge-Kutta method to solve for $y(1.2)$, considering step-length $h = 0.1$, given that $\frac{dy}{dx} = x^2 + y^2$, with initial condition $y(1) = 1.5$.Image: OR ORImage: OR ORUse Modified Euler's method to solve for $y(0.4)$, considering step-length $h = 0.2$, given that $\frac{dy}{dx} = 1 + y^2$, with initial condition $y(0) = 0$.Image: OR SECTION-CImage: OR ORQ 12Evaluate $\int_1^2 \int_2^3 e^{x+y} dx dy$ using composite 1/3 Simpson Rule and compare with exact solution. OR A slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various values of the time t. Find the velocity and acceleration of the slider when i): = 20	
Q11Use fourth order Runge-Kutta method to solve for $y(1.2)$, considering step-length $h = 0.1$, given that $\frac{dy}{dx} = x^2 + y^2$, with initial condition $y(1) = 1.5$.ORUse Modified Euler's method to solve for $y(0.4)$, considering step-length $h = 0.2$, given that $\frac{dy}{dx} = 1 + y^2$, with initial condition $y(0) = 0$.10SECTION-CQ 12Evaluate $\int_1^2 \int_2^3 e^{x+y} dx dy$ using composite 1/3 Simpson Rule and compare with exact solution. OR A slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various values of the time t. Find the velocity and acceleration of the slider when i): = 20	
that $\frac{dy}{dx} = x^2 + y^2,$ with initial condition $y(1) = 1.5.$ Use Modified Euler's method to solve for $y(0.4)$, considering step-length $h = 0.2$, given that $\frac{dy}{dx} = 1 + y^2,$ with initial condition $y(0) = 0.$ SECTION-C Q 12 Evaluate $\int_1^2 \int_2^3 e^{x+y} dx dy$ using composite 1/3 Simpson Rule and compare with exact solution. OR A slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various values of the time t. Find the velocity and acceleration of the slider when i): = 20	
$\frac{dy}{dx} = x^2 + y^2,$ with initial condition $y(1) = 1.5.$ OR $Use Modified Euler's method to solve for y(0.4), considering step-length h = 0.2, given that \frac{dy}{dx} = 1 + y^2, with initial condition y(0) = 0. SECTION-C Q \ 12 \qquad Evaluate \int_1^2 \int_2^3 e^{x+y} dx dy \text{ using composite 1/3 Simpson Rule and compare with exact solution.} OR A slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various values of the time t. Find the velocity and acceleration of the slider when i): = 20$	
with initial condition $y(1) = 1.5$.OR10Use Modified Euler's method to solve for $y(0.4)$, considering step-length $h = 0.2$, given that $\frac{dy}{dx} = 1 + y^2$, $\frac{dy}{dx} = 1 + y^2$,with initial condition $y(0) = 0$.SECTION-CQ 12Evaluate $\int_1^2 \int_2^3 e^{x+y} dx dy$ using composite 1/3 Simpson Rule and compare with exact solution. OR A slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various values of the time t. Find the velocity and acceleration of the slider when i): = 20	
with initial condition $y(1) = 1.5$.OR10Use Modified Euler's method to solve for $y(0.4)$, considering step-length $h = 0.2$, given that $\frac{dy}{dx} = 1 + y^2$, $\frac{dy}{dx} = 1 + y^2$,with initial condition $y(0) = 0$.SECTION-CQ 12Evaluate $\int_1^2 \int_2^3 e^{x+y} dx dy$ using composite 1/3 Simpson Rule and compare with exact solution. OR A slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various values of the time t. Find the velocity and acceleration of the slider when i): = 20	
OR10Use Modified Euler's method to solve for $y(0.4)$, considering step-length $h = 0.2$, given that10 $\frac{dy}{dx} = 1 + y^2$, $\frac{dy}{dx} = 1 + y^2$,with initial condition $y(0) = 0$.SECTION-CQ 12Evaluate $\int_1^2 \int_2^3 e^{x+y} dx dy$ using composite 1/3 Simpson Rule and compare with exact solution. ORA slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various values of the time t. Find the velocity and acceleration of the slider when i): =20	
$\frac{dy}{dx} = 1 + y^{2},$ with initial condition $y(0) = 0.$ SECTION-C $Q \ 12$ Evaluate $\int_{1}^{2} \int_{2}^{3} e^{x+y} dx dy$ using composite 1/3 Simpson Rule and compare with exact solution. OR A slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various values of the time t. Find the velocity and acceleration of the slider when i): = 20	CO5
$\frac{dy}{dx} = 1 + y^{2},$ with initial condition $y(0) = 0.$ SECTION-C $Q \ 12$ Evaluate $\int_{1}^{2} \int_{2}^{3} e^{x+y} dx dy$ using composite 1/3 Simpson Rule and compare with exact solution. OR A slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various values of the time t. Find the velocity and acceleration of the slider when i): = 20	
under the with initial condition $y(0) = 0.$ SECTION-CQ 12Evaluate $\int_{1}^{2} \int_{2}^{3} e^{x+y} dx dy$ using composite 1/3 Simpson Rule and compare with exact solution. OR A slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various values of the time t. Find the velocity and acceleration of the slider when i): = 20	
under the with initial condition $y(0) = 0.$ SECTION-CQ 12Evaluate $\int_{1}^{2} \int_{2}^{3} e^{x+y} dx dy$ using composite 1/3 Simpson Rule and compare with exact solution. OR A slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various values of the time t. Find the velocity and acceleration of the slider when i): = 20	
SECTION-CQ 12Evaluate $\int_{1}^{2} \int_{2}^{3} e^{x+y} dx dy$ using composite 1/3 Simpson Rule and compare with exact solution. OR A slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various values of the time t. Find the velocity and acceleration of the slider when i): = 20	
Q 12Evaluate $\int_{1}^{2} \int_{2}^{3} e^{x+y} dx dy$ using composite 1/3 Simpson Rule and compare with exact solution. OR A slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various values of the time t. Find the velocity and acceleration of the slider when i): = 20	
OR A slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various values of the time t. Find the velocity and acceleration of the slider when i): = 20	
OR A slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various values of the time t. Find the velocity and acceleration of the slider when i): = 20	
A slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various values of the time t. Find the velocity and acceleration of the slider when i): = 20	
below for various values of the time t. Find the velocity and acceleration of the slider when i): = 20	
10.1 second $11.1 - 0.0$ second	CO3
t 0 0.1 0.2 0.3 0.4 0.5 0.6 x 30.13 31.62 32.87 33.64 33.95 33.81 33.24	
x 30.13 31.62 32.87 33.64 33.95 33.81 33.24	