Name: Enrolment No:		
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, December 2020 Course: \quad Probability Theory \& Statistics Semester: V Program: B.Sc. (Hons.) Mathematics Time: $\mathbf{0 3}$ hrs. Course Code: \quad MATH 3013 Max. Marks: 100 Instructions: All questions are compulsory.		
SECTION A (Each question carries 5 marks)		
S. No.		Marks
Q1	Let the first four moments of a distribution about the value 5 be 2, 20, 40 and 50 . Then the mean of the distribution is A. 4 B. 7 C. 3 D. 2	CO1
Q2	If X represents the outcome, when a fair die is tossed, then the moment generating function of X is given by \qquad	CO1
Q3	Consider the following distribution function $f(x)=\lambda e^{-x / t}, \quad 0 \leq x<\infty, \lambda>0$ Then the third moment about origin is A. $3 / \lambda^{3}$ B. $6 / \lambda^{3}$ C. $9 / \lambda^{3}$ D. $12 / \lambda^{3}$	CO1
Q4	A random variable X has an exponential distribution with probability density function given by $f(x)=3 e^{-3 x}$, for $x>0$ and zero elsewhere then the probability that X is not less than 4 is \qquad	CO2
Q5	If $f(x, y)=k(1-x-y), 0<x, y<\frac{1}{2}$, is a joint density function then $\mathrm{k}=$	CO 3
Q6	The transition probability matrix of a Markov chain $\left\{X_{n}\right\}, n=1,2,3 \ldots$... Having three states 1,2 and 3 is $p=\begin{array}{llll}0.1 & 0.5 & 0.4 \\ 0.6 & 0.2 & 0.2\end{array}$ and the initial distribution is $p^{(0)}=$ (0.7, $0.2,0.1$) then $P\left\{X_{2}=3.3\right.$. $=$ \qquad	CO5

SECTION B (Each question carries 10 marks)											
Q7	In a certain factory turning out razor blades, there is a small chance of 0.002 for any blade to be defective. The blades are supplied in packets of 10 . Calculate the approximate number of packets containing no defective, one defective and two defective blades in a consignment of 10,000 packets.										CO2
Q8	The joint pdf of a two dimensional random variable (X, Y) is given by $f(x, y)=$ $x y^{2}+\frac{x^{2}}{8} ; 0 \leq x \leq 2,0 \leq y \leq 1$. Compute $P(X>1), P\left(Y<\frac{1}{2}\right)$ and $P(X>1 /$ $\left.Y<\frac{1}{2}\right)$.										CO3
Q9	A fair dice is 720 times. Use Chebyshev's inequality to find a lower bound for the probability of getting 100 to 140 sixes.										CO4
Q10	Examine if the weak law of large numbers holds for the sequence $\left\{X_{p}\right\}$ of independent identically distributed random variables with $P\left[X_{k}=(-1)^{k-1} \cdot k\right]=\frac{6}{\pi^{2} k^{2}}, k=$ $1,2, \ldots ; p=1,2, \ldots .$.										CO4
Q11	The lifetime of a certain brand of an electric bulb may be considered a random variable with mean 1200 hours and standard deviation 250 hours. Find the probability, using central limit theorem that the average lifetime of 60 bulbs exceeds 1250 hours. OR If $X_{1}, X_{2}, X_{3}, \ldots \ldots \ldots X_{n}$ are Poisson variate with parameter lambda is equal to 2, Use the central limit theorem to estimate $P\left(120 \leq S_{n} \leq 160\right)$, where $S_{n}=X_{1}+X_{2}+$ $X_{3} \ldots \ldots \ldots+X_{n}$ and $n=75$.										CO4
SECTION-C (This question carries 20 marks)											
Q 12		the	cie	$\begin{gathered} \hline \text { corr } \\ \hline 3 \\ \hline 10 \end{gathered}$		tain 5 11 OR cem hite	$\begin{aligned} & \hline \text { lines } \\ & \hline 6 \\ & \hline 13 \end{aligned}$	7 14	for 8 16	ollowing 9 15 te, 3 red umber of ginal and	CO 3

