Name:			14 upec	,
Enrolment No:			UPES)
			EUM AND ENERGY STUDIES amination, December 2020	
		Omme End Semester Ex	animation, December 2020	
Course:	R	Reservoir Engineering I	Semester: V	
Program		3. Tech. APEUP	Time: 03 hrs.	
Course C	ode: P	EAU 3002	Max. Marks: 100	
Instruction	onge All	Lauretions are compulsory		
Histructio	ons: An	l questions are compulsory. SECT	TION A	
1. Each or	uestion	will carry 5 marks		
		elect the correct answer(s)		
Q 1	i.	The basic properties of that d	etermine a reservoir rock's hydrocarbon	CO1
		storage capacity are		
		A. Porosity and permeabilit	-	
		B. Porosity and water satura		
		C. Porosity and grain density		
		D. Porosity and capillary pr		
	ii.		id remains in the pores and, for all practical	
		purposes,		
		A. Will not flow		
		B. Partially flowC. Have normal flow		
		D. None of the above		
	iii.	Leverett realized that capillary p	ressure denends on	
	111.	A. Porosity,	ressure depends on	
		B. Interfacial tension.		
		C. Mean pore radius di,		
		D. All of the above		
	iv.		lations which of the following porosity is	
		used		
		A. Absolute porosity		
		B. Effective porosity		
		C. Both of the above		
		D. None of the above		
	v.	Carbonate may have porosity in	the range of	
		A. 0.54 - 1.40 %		
		B. 3.50 - 29 %		
		C. 6 - 50 %		
0.2		D. 0.65 - 33 %		000
Q 2	i.	what will be the effect on perm	eability when specific surface decreases?	CO2

Decrease

	1		
		B. Increase	
		C. Remains same	
		D. None of the above	
	ii.	Which of the following statement is true?	
		A. When $Sw = one$. $kw = k$ and rock is entirely saturated with water	
		B. When So < Soc. there will be no oil flow and ko =0.	
		C. When $So = 1$, $ko = k$ and rock is entirely saturated with oil	
		D. All of the above	
	iii.	Which of the following statement is true?	
		A. The value of Sw at $krw = 0$ is called the Swc	
		B. The value of So at $kro = 0$ is called the Soc	
		C. When relative permeability of a phase is zero, there is still a	
		considerable saturation of this phase	
		D. All of the above	
	iv.	Darcy's Law applies only when there is	
		A. Laminar (viscous) flow	
		B. Semi-Steady-state flow	
		C. Compressible fluids	
		D. All of the above	
	v.	Which of the following are data sources for determine rock permeability	
		A. Cores	
		B. Seismic velocity surveys	
		C. Rate of penetration during drilling	
		D. Bottom hole flowing pressure	
Q 3	i.	If formation volume factor for under saturated oil reservoir is plotted	CO3
		against pressure	
		A. The formation volume factor remain constant from initial reservoir	
		pressure to bubble point pressure and it start declining below bubble	
		point pressure	
		B. The formation volume factor start declining from initial reservoir	
		pressure and continue declining below bubble point pressure also	
		C. The formation volume factor first increase from initial reservoir	
		pressure to bubble point pressure and it start declining below bubble	
		point pressure	
		D. The formation volume factor remain constant from initial reservoir	
		pressure to bubble point pressure and will remain constant even below	
		bubble point pressure	
	ii.	For determining the bubble point pressure, which of the following	
		experiment is carried out during PVT analysis.	
		A. Isothermal Flash	
		B. Constant Composition Expansion (CCE)	
	C. Constant Volume Depletion (CVD)		
		D. Differential Vaporisation (DV)	
	iii. Three pounds of propane is placed in a vessel at 120°F and 60 psi		
		Assuming an ideal gas behavior, the gas will occupy the an approximate	
		volume at above conditions	
L	ı		

_	T		1		
		A. 5 ft^3			
		B. 6 ft^3			
		C. 7 ft^3			
		D. 8 ft^3			
	iv.	The basic properties of gases are commonly expressed in terms of			
		A. The apparent molecular weight,			
		B. Apparent volume,			
		C. Apparent temperature			
	D. All of the above				
	v.	The value of gas formation volume factor (Bg) of gas from a reservoir with			
		temperature 200°F and pressure 2500 psia. The Z factor of this is measured			
		as 0.851 A. 0.000132 RB/scf			
		B. 0.00132 RB/scf			
		C. 0.002132 RB/scf			
		D. 0.003132 RB/scf			
Q 4	i.	The primary reservoir characteristic are	CO4		
4 +	1.	A. Type and number of fluids in the reservoir	CO4		
		B. Flow regimes			
		C. Reservoir geometry			
		D. All of the above			
	ii.				
	111.	When a well was drilled, an oil-bearing zone was encounter in the depth			
		between 2020 – 2040 m. However, the well was completed up to the depth			
		of 2030 m. The type of flow oil in to the bottom of well will be A. Linear flow			
		B. Radial flow			
		C. Hemispherical flow			
		D. None of the above			
	iii.	The pressure derivative with respect to time is essentially a function of both			
		position i and time t, in case of			
		A. Steady state flow			
		B. Unsteady state flow			
		C. Pseudo steady-state flow			
		D. None of the above			
	iv. The equation $q = \frac{0.001127kA(p1-p2)}{\mu L}$ is used for				
		A. Radial flow of compressible fluid			
		B. Linear flow of compressible fluid			
		C. Radial flow incompressible fluid			
		D. Linear flow incompressible fluid			
	v.	Which of the following equations are used for the mathematical			
	'.	formulation of the transient-flow equation.			
		A. Continuity Equation			
		B. Quadratic Equation.			
		C. Linear Equation.			
		D. Radical Equation.			
		D. Kaulcai Equation.			

Q 5	i. Select the correct statement from the following	CO5
Q J	A. All reserve estimates involve some degree of uncertainty.	603
	B. Availability of reliable geologic and engineering data is chiefly	
	responsible for the uncertainty in the estimation of reserve.	
	C. Reserve estimation is dynamic process and estimation is refined at	
	different stages in the life of field	
	D. All of the above.	
	ii. Proven developed reserves are the reserves	
	A. That can be produced with existing wells	
	B. That can be produced after drilling required number of well	
	C. That can be produced with existing wells after creating production	
	facilities	
	D. All of the above	
	iii. If any reserve is in P50 category, that means	
	A. It needs further development	
	B. It has the probability to exist	
	C. Both (A) and (B)	
	D. None of the above	
	iv. Which method of reserve estimation has the minimum error	
	A. Volumetric,	
	B. Material balance	
	C. Production performance.	
	D. Comparative methods	
	v. Which of the following parameters do you not need to know in order to	
	determine a reservoir hydrocarbon in place?	
	A. Areal extent of the reservoir	
	B. Net thickness	
	C. Permeability	
	D. Porosity	
Q 6	i. Sources of reservoir energy	CO6
Q U	A. Gas dissolved in oil	200
	B. Oil overlain by free gas	
	• •	
	J 1	
	ii. While producing from a reservoir, the reservoir pressure declines rapidly	
	and continuously, gas-oil ratio increases to maximum and then declines	
	and there is water production. The drive mechanism operating in this	
	reservoir is	
	A. Water drive	
	B. Gas cap drive	
	C. Depletion drive	
	D. Partial water drive	
	iii. The most suitable drive for pressure maintenance is	
	A. Water drive	
	B. Gas drive	

	1						1
	C.	Depletion dr					
	D.	All of the ab					
		ile producing fro			-	•	
	_	oil ratio contin					
	-	duction. The driv	ve mechanis	m operating in t	his reservoi	r is	
	A.	Water drive					
	B.	Gas cap driv					
	C.	Depletion dr					
	D.	Partial water					
		drive mechanis		ve maximum red	covery		
	A.	Bottom water					
	В.	Gas cap driv					
	C.	Edge water d					
	D.	All of the ab					
4 70 1		40	SECT	TION B			
		carry 10 marks					
	1	short / brief not	es				
S No.	Question						СО
Q 7		ensity of a brine s					CO1
		d core matrix are	e 1.04 gm/co	c and $2.55 \text{ gm}/\sigma$	cc, find the	porosity of the	
	formation.				_		
		various factors					
Q 8		an expression to		U 1	•	•	CO2
		th different perm	•		rs have the s	ame width and	
		ctional area with			1		
		ayers of 6, 7 an					
		flow. The depth nows the followi				. Core analysis	
	report si	lows the followi	ng permeao	iiity data for eac	in layer.		
	T	Layer1	ī	Layer2	I	_ayer3	-
	Depth ft	Permeability	Depth ft	Permeability	Depth ft	Permeability	<u> </u>
	Depui it	md	Берш п	md	Depui it	md	
	5012-13	485	5018-20	210	5025-28	95	1
	5013-15	50	5020-23	200	5028-30	20	
	5015-18	200	5023-25	195	5030-32	89	
	3013 10	200	3023 23	173	5032-35	90	-
					5035-38	86	
	Calculate th	ie average perme	ability of th	l ne entire pay zor			<u> </u>
	Calculate ti	ie average periid	zability of th	ie entire pay zor	ie (i.e., <i>3</i> ,01	2– 3,038).	
Q 9	State the m	rimary natural d	rive mecha	nisms encounter	ed in a tvn	ical petroleum	CO6
()	_	ith explaining th				_	
		ife of reservoir u				6:	
Q 10		ations for determ				ural gas	CO3
_		molecular weigh		<i>O</i> 1 ··· ·· ·· ··			
	• Specific g						

	• Density			
	Gas formation volume factor, Bg			
Q 11	An oil well is producing at a stabilized rate of 1000 STB/day at a stabilized bottom-			
	hole flowing pressure of 3000 psi. Analysis of the pressure buildup test data			
	indicates that the pay zone is characterized by a permeability of 150 md and a			
	uniform thickness of 25 ft.			
	The well drains an area of approximately 40 acres. The following additional data			
	is available:			
	rw = 0.25 ft A = 40 acres			
	$Bo = 1.25 \text{ bbl/STB} \qquad \qquad \mu o = 2.5 \text{ cp}$			
	Calculate the pressure profile (distribution) and list the pressure drop across			
	2 ft intervals from rw to 2 ft, 4 to 6 ft, 20 to 22 ft, 100 to 102 ft, and 700 to			
	702 ft. and present your observations			
	SECTION C			
1. Each Q	uestion carries 20 Marks.			
2. Instruc	tion: Write long answer.			
Q 12	A. Describe the production decline analysis and its controlling factors. Illustrate	CO5		
	in details all types of rate decline behavior and its importance in petroleum			
	industry.			
	B. Determine the original gas in place (OGIP) in scf for the gas reservoir for which			
	average parameters are given below. The initial reservoir temperature is 200 °F			
	Thickness, h (ft) = 25 , Porosity = 0.16 , Water Saturation Sw = 0.25 ,			
	Area = 950 acres, Reservoir Pressure Pr (psi) = 5775,			
	Gas deviation factor, $Z = 0.96$			
	C. Determine remaining gas reserves and recovery factor for the above reservoir			
	when abandonment reservoir pressure is 750 psi. Assume the gas deviation			
	factor at 750 psi and 200 °F is 0.95.			