| Name: <br> Enrolment No: | UPES SAP ID: <br> ment No: |  |  |
| :---: | :---: | :---: | :---: |
| Cou <br> Pro <br> Cou <br> No. <br> Not |  |  |  |
| Section A |  |  |  |
| Q1. | Explain the term undercutting as applicable to gears | 5 | CO1 |
| Q2. | Define following terms: <br> a. Kinematic Mechanism <br> b. Kinematic chain | 5 | CO1 |
| Q3. | Explain application of gyroscopic couple and its effect in two situation discussed below (write in brief -60 words) <br> a. While an airplane or ship negotiating a turn there might be excessive turn that need to control by some device, called as gyroscopic stabilizer. So in this case how this stabilizer helps to stabilize the airplane or ship. <br> b. While a two wheeler negotiating a turn, it is subjected by centrifugal and gyroscopic couple. So how rider keeping his/her motorbike under stable condition. | 5 | CO1 |
| Q4. | Determine the Degrees of Freedom (DOF) of the mechanism as shown in Fig 1: <br> Fig 1: Mechanism | 5 | CO2 |
| Q5. | Explain in brief role of cam and follower arrangement in automated machines and IC engines. | 5 | CO1 |


| Q6. | Explain Coriolis acceleration component, give names of machines where it needs to be <br> calculated. | $\mathbf{5}$ | CO1 |
| :--- | :--- | :--- | :--- | :--- |
| Q7. | For the slider-crank mechanism shown in Fig. 2, determine the velocity of the point C on <br> the link AB when the crank OA rotates at 180 rpm counterclockwise. OA $=500 \mathrm{~mm}, \mathrm{AB}$ <br> = 1500 mm and AC $=250 \mathrm{~mm}$. | $\mathbf{1 0}$ | CO2 |



