Name:

S. No.

Enrolment No:

Semester

Max. Marks: 100

Marks

Time

: V

: 03 hrs.

 \mathbf{CO}

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2020

Programme Name: B.Tech. Mechatronics Engineering

Course Name : Robotics and Control

Course Code : ECEG3001

Nos. of page(s) : 03

Instructions: 1. Assume any missing data

2. There is an internal choice in Section B in Q.7

SECTION A

(Answer in not more than 50 words)

201100		1VIAI IXS	CO
Q 1	Describe in brief the various control schemes/strategies used for position and force control of manipulators.	5	CO4
Q 2	The arm lengths of a planar two-link manipulator having two revolute joints are 1 m each. If the joint velocities are constant at $\dot{\theta}_1 = 1$, $\dot{\theta}_2 = 2$, find the instantaneous velocity of the tool when $\theta_1 = \theta_2 = \frac{\pi}{4}$. Differentiate between forward and inverse kinematics.	5	CO2
Q 3	Differentiate between forward and inverse kinematics.	5	CO2
Q 4	Discuss the advantages and disadvantages of computed torque control.	5	CO4
Q 5	Compare among the four fundamental robot arms giving at least one advantage and one disadvantage of each.	5	CO1
Q 6	Differentiate between path and trajectory. Describe various types of trajectories.	5	CO3
	SECTION B		
	(Answer in not more than 150 words)		
Q 7	 a) Derive the pseudo-inertia matrix for a two-link planar manipulator having two revolute joints. Make use of DH parameters in your derivation. OR 	10	CO2
	b) Derive the Jacobian matrix for a three-link planar manipulator having three revolute joints.		
Q 8	It is required to insert a peg into a hole with the help of a robot. Divide your assembly task into simple sub-tasks and hence determine the natural and artificial constraints for each sub-task.	10	CO4
Q 9	A joint drive system consists of a DC servomotor with total inertia of 0.02 kg m ² and bearing friction of 0.5 N/s and a gearbox with gear ratio of 32. The link inertia is 5 kg m ² and the link bearing friction is 2 N/s. Determine (i) the effective inertia and effective damping for the joint.	10	CO4

	(ii) the closed loop transfer function for a proportional controller with				
	proportional gain $K = 10$.				
	(iii) the unit step response.				
	(iv) the steady state error.				
Q 10	It is desired to have the first joint of a six-axis robot to move from the initial				
	position, $\theta_0 = 15^{\circ}$, to a final position, $\theta_f = 75^{\circ}$, in 3 seconds using a cubic polynomial.	10	CO3		
	Determine the trajectory.				
Q 11	For a robotic controller it is proposed to implement partitioned proportional integral				
	(PPI) control strategy. Develop the block diagram and mathematical model for PPI	10	CO4		
	controller.				
SECTION-C					
Q 12	For the two-link planar manipulator having two revolute joints, design the hybrid				
	position force controller to follow a surface defined as				
	$x = \cos(t); y = \sin(t)$	20	CO4		
	while maintaining a constant contact force f_d with the friction surface. Draw the block				
	diagram of the controller. (Note: <i>t</i> represents time)				