Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2020

SECTION A

Course: Solid Mechanics Course Code: MECH3022

Semester: V Time: 03 hrs. Max. Marks: 100

Program: BTech- Mechanical

S. No.	Question Statement	Marks	СО
Q 1	Explain the properties of Kronecker Delta and Permutation symbol.	5	CO1
Q 2	Explain the summation convention.	5	CO1
Q 3	Describe plane stress and plane strain problems.	5	CO1
Q 4	Describe the types of boundary condition.	5	CO1
Q 5	Explain the properties of influence coefficient.	5	CO1
Q 6	State the Maxwell-Betti-Rayleigh's reciprocal theorem.	5	CO1
	SECTION B		
Q 7	Derive Castigliano's first theorem.	10	CO2
Q 8	Consider a problem with body forces, $f = \begin{cases} f_1 \\ f_2 \\ f_3 \end{cases} = \begin{bmatrix} -6Gx_2x_3 \\ 2Gx_1x_3 \\ 10Gx_1x_2 \end{bmatrix} \text{ where, } G = \frac{E}{2(1+2\nu)} \text{ and } \nu = \frac{1}{4}$ The displacement field is given as, $u = \begin{cases} u_1 \\ u_2 \\ u_3 \end{cases} = \begin{bmatrix} C_1x_1^2x_2x_3 \\ C_2x_1x_2^2x_3 \\ C_3x_1x_2x_3^2 \end{bmatrix}, \text{ determine the constants } C_1, C_2 \text{ and } C_3.$	10	CO3
Q 9	With respect to axes $Ox_1x_2x_3$ the stress state is given in terms of the coordinates by the matrix, $\sigma_{ij} = \begin{bmatrix} x_1x_2 & x_2^2 & 0 \\ x_2^2 & x_2x_3 & x_3^2 \\ 0 & x_3^2 & x_3x_1 \end{bmatrix},$ Determine (a) the body force components as functions of the coordinates if the equilibrium equations are to be satisfied everywhere (b) the stress vector at point $P(1,2,3)$ on the plane whose outward unit normal makes equal angles with the positive coordinate axes.	10	CO3
Q 10	Derive the equilibrium equations for 2D stress condition in cylindrical coordinate system.	10	CO2

