Name: Enrolment No:			
Course Cours Progra	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2020 Solid Mechanics Semeste Code: MECH3022 Time: 03 : BTech- Mechanical Max. M	V hrs. rks: 10	
SECTION A			
S. No.	Question Statement	Marks	CO
Q 1	Explain the properties of Kronecker Delta and Permutation symbol.	5	CO1
Q 2	Explain the summation convention.	5	CO1
Q 3	Describe plane stress and plane strain problems.	5	CO1
Q 4	Describe the types of boundary condition.	5	CO1
Q 5	Explain the properties of influence coefficient.	5	CO1
Q 6	State the Maxwell-Betti-Rayleigh's reciprocal theorem.	5	CO1
SECTION B			
Q 7	Derive Castigliano's first theorem.	10	CO 2
Q 8	Consider a problem with body forces, $f=\left\{\begin{array}{l}f_{1} \\ f_{2} \\ f_{3}\end{array}\right\}=\left[\begin{array}{c}-6 \mathrm{G} x_{2} x_{3} \\ 2 \mathrm{G} x_{1} x_{3} \\ 10 \mathrm{G} x_{1} x_{2}\end{array}\right]$ where, $\mathrm{G}=\frac{\mathrm{E}}{2(1+2 v)}$ and $v=\frac{1}{4}$ The displacement field is given as, $u=\left\{\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right\}=\left[\begin{array}{l}C_{1} x_{1}^{2} x_{2} x_{3} \\ C_{2} x_{1} x_{2}^{2} x_{3} \\ C_{3} x_{1} x_{2} x_{3}^{2}\end{array}\right]$, determine the constants $\mathrm{C}_{1}, \mathrm{C}_{2}$ and C_{3}.	10	CO3
Q 9	With respect to axes $O x_{1} x_{2} x_{3}$ the stress state is given in terms of the coordinates by the matrix, $\sigma_{i j}=\left[\begin{array}{ccc} x_{1} x_{2} & x_{2}^{2} & 0 \\ x_{2}^{2} & x_{2} x_{3} & x_{3}^{2} \\ 0 & x_{3}^{2} & x_{3} x_{1} \end{array}\right],$ Determine (a) the body force components as functions of the coordinates if the equilibrium equations are to be satisfied everywhere (b) the stress vector at point $P(1,2,3)$ on the plane whose outward unit normal makes equal angles with the positive coordinate axes.	10	CO3
Q 10	Derive the equilibrium equations for 2D stress condition in cylindrical coordinate system.	10	CO 2

Q 11	Derive the expression of normal stress in unsymmetrical bending.	10	CO 2
SECTION-C			
Q 12	The Z-section shown in Figure below is subjected to the bending moment of $M=20$ $\mathrm{kN}-\mathrm{m}$. The principal axes y and z are oriented as shown, such that they represent the minimum and maximum principal moments of inertia, $I_{y}=0.96 \times 10^{-3} \mathrm{~m}^{4}$ and $I_{z}=$ $7.54 \times 10^{-3} \mathrm{~m}^{4}$ respectively. Determine the normal stress at point P and the orientation of the neutral axis. OR Determine the constants $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ and C_{4} in the Airy stress function $\phi=C_{1} x^{2}+C_{2} x^{2} y+C_{3} y^{5}+C_{4} x^{2} y^{3}$ for the rectangular beam shown in figure. Also find out the corresponding stress functions.	20	CO

