Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2020

Course: Basin Analysis

Program: B. Tech Geoinformatics Engineering [GIE]

Semester: V

Time 03 hrs.

Course Code: PEGS 3018 Max. Marks: 100

SECTION A

- 1. Each Question will carry 5 Marks
- 2. Instruction: Complete the statement / Select the correct answer(s)
- 3. All Questions are compulsory.

S. No.		Marks	CO
Q 1	Define Sequence Stratigraphy.		CO1
Q 2	i. Rift basin develop only in Transform plate margin. ii. Pull apart basin is related to strike slip deformation. iii. Relative Sea Level represent only global reference surface. iv. Backtriping methods use for depositional history analysis of any sedimentary basin. v. Subsidence analysis is not a component of basin modeling.		CO2
Q 3	Write any_Five components of basin modelling.	5	CO3
Q 4	 Fill in the Blanks- i. Name of Petro physical Properties are	5	CO4
Q 5	Define Airy model of Isostasy.	5	CO1
Q 6	Give the name of any Five petroliferous basins of India from category I.		CO2

SECTION B

- 1. Each question will carry 10 marks.
- 2. Instruction: Write short / brief notes.
- 3. Attempt all the Questions.

	-	•		
Q 7	Create difference between Alluvial fan and Deltaic depositional Sequences.			CO1
Q 8	Write a	short notes on any two:		
	i-	Gilbert type delta	10	CO3
	ii-	Foreland Basin	10	COS
	iii-	Base Level		

Q 9	An exploratory well has encountered a 300m thick shale horizon at a depth of 2km.					
	The total porosity of shale is measur	10	CO4			
	Calculate the decompacted thicknes	s of the unit?				
Q 10	Calculate the compacted porosity of given lithology at depth of 4 km from the surface.					
		Shale	Sandstone	Limestone	10	CO4
	Initial Porosity [Θ_0]	40%	30%	40%	10	
	Compaction rate/meter [C m ⁻¹]	5x10 ⁻⁴	3x10 ⁻⁴	7x10 ⁻⁴		
		-				
Q 11	Classify and define the basins related to Divergent plate margin.					CO3
Q 11	Discuss the evolution of compressional, extensional, and pull apart basins under the					
	ruction: Write long answer.			T		T
Ų II	three dimensional stress environment.				20	CO3
	OR					
	OK .					
	Large area of continent consists of 30 km of crust with density 2.8 Mg/m3 over 90 km					
	of material with density 3.1 Mg/m ³ . The asthenosphere density is 3.2 Mg/m ³ . This					
		The astheno	sphere density	is 3.2 Mg/m ³ . This		
	of material with density 3.1 Mg/m ³					CO4
	of material with density 3.1 Mg/m ³ region is covered with a 1.6 km thick	ness of ice of d	lensity 0.9 Mg/1	m ³ . The ice covered		CO4
	of material with density 3.1 Mg/m ³ region is covered with a 1.6 km thick region is assumed to be isostatic equ	ness of ice of duilibrium. The	lensity 0.9 Mg/1 n, the ice melts	m ³ . The ice covered. By how much will	20	CO4
	of material with density 3.1 Mg/m ³ region is covered with a 1.6 km thick	ness of ice of duilibrium. The	lensity 0.9 Mg/1 n, the ice melts	m ³ . The ice covered. By how much will	20	CO4