Name:	Name: Li UPES			
Enrolm	Enrolment No: UNIVERSITY WITH A PURPOSE			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES				
Online End Semester Examination, December 2020				
Course: Principles of Engineering Design Semester: V				
Program: B. Tech. FSETime 03 hrs.Course Code: HSFS 3002Max. Marks: 100				
Course Code: HSFS 3002 Max. Marks: 100				
	SECTION A			
Each question carries 5 Marks				
S. No.	Question	СО		
Q 1	Write all factors need to be considered during engineering design.	CO1		
02				
Q2	Write short note on: a. Solid length	CO1		
	b. Free length			
	c. Spring index			
	d. Spring rate			
Q3	Write Clavarino's equation and mention the use of this equation.	CO2		
Q4	Define 'pitch', back pitch, diagonal pitch and 'margin' of riveted joint	CO2		
Q5	List various types of welded joints.	CO1		
Q6	Why Poisson's Ratio is important for finding out the dimensional changes? Why the efficiencies of joints effect the design of pressure vessel?	CO2		
SECTION B				
Each question carries 10 marks				
Q 7	Write the expression of Lame's equation for radial stress and tangential stress.	CO3		
Q 8	Maximum shear stress induced in the wire of a helical spring,	CO4		
	$\tau = K \frac{8 * W * C}{\pi * d^2}$			
	Derive the equation with suitable assumptions and diagrams.			
Q 9	A helical spring is made from a wire of 6mm diameter and has outside diameter of 75mm. If	CO4		
	the permissible shear stress is 340 MPa and modulus of rigidity 80 kN/mm2, Find the axial	004		
	load which the spring can carry and the deflection per active turn.			
Q 10	A plate 100 mm wide and 10 mm thick is to be welded to another plate by means of double	CO4		
	parallel fillets. The plates are subjected to a static load of 80 KN. Find the length of weld, if the shear stress is 55 MPa.	CO4		

Q 11	Describe the stresses acting in the cylindrical pressure vessel. Derive the minimum thickness of metal sheet required in a cylindrical pressure vessel to overcome the stresses. Use the suitable diagrams and assumptions.	CO3		
	Section C			
Each question carries 20 Marks.				
Q12	A double riveted lap joint is made between 15 mm thick plates. The rivet diameter and pitch	CO5		
	are 25 mm and 75 mm respectively. If the ultimate stresses are 400 MPa in tension, 320 MPa			
	in shear and 640 MPa in crushing, find the maximum force per pitch which will rupture the			
	joint.			
	If the above joint is subjected to a load such that the factor of safety is 4, find out the actual			
	stresses developed in the plates and the rivets			