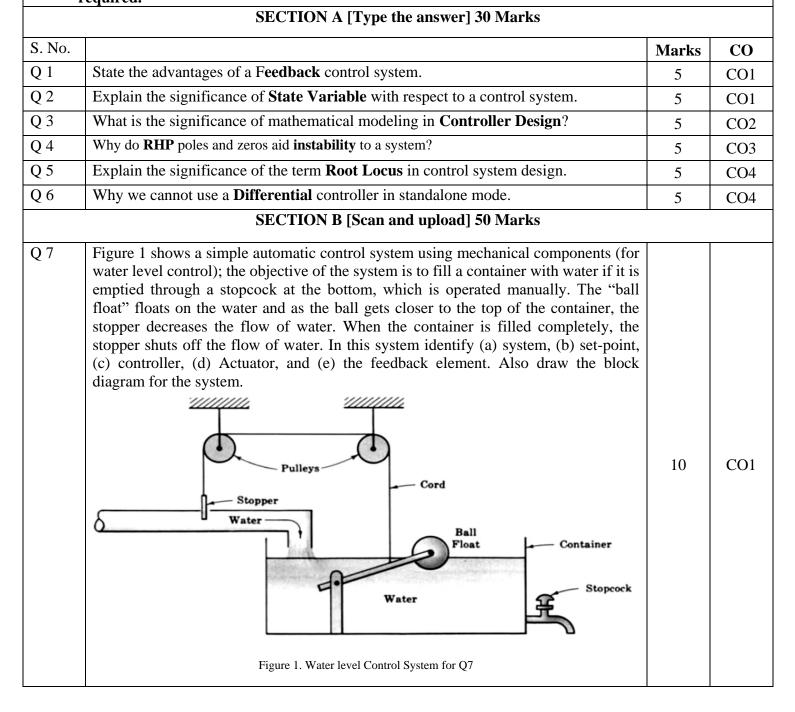
**Enrolment No:** 




## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End-Sem Examination, Dec. 2020

Course: Control System Engineering Program: B.Tech. ECE Course Code: ECEG 4007 Semester: V Time 03 hrs. Max. Marks: 100

**Instructions:** 

- 1. Attempt Section A by typing in your answers in the relevant text box.
- 2. Attempt section B and Section C on A4 size blank sheets. Use graph paper wherever necessary.
- 3. Answer should be neat and clean. Draw a free hand sketch for circuits/tables/schematics wherever required.



| Q 8  | Determine the transfer function of the R-C network mechanization of the <b>lead compensator</b> shown in figure 2.                                                                                                                                                                                                                                                                                                                                            |    |     |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
|      | $\begin{array}{c} R_1 \\ \hline \\ r_1 \\ \hline \\ r_2 \\ \hline \\ Fig 2 R-C lead compensator network for Q8 \end{array}$                                                                                                                                                                                                                                                                                                                                   | 10 | CO2 |
| Q 9  | Consider a simple pendulum system expressed by the following model:<br>$\ddot{\theta} = -\frac{g}{l}sin\theta + ucos\theta$                                                                                                                                                                                                                                                                                                                                   |    |     |
|      | $\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10 | CO4 |
|      | <b>Linearize</b> the above model and express the system in <b>state space</b> model.                                                                                                                                                                                                                                                                                                                                                                          |    |     |
| Q 10 | Consider a system expressed by:<br>$\dot{x} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} x$                                                                                                                                                                                                                                                                                                                                                                | 10 | CO4 |
|      | Comment on the <b>stability</b> of the system.                                                                                                                                                                                                                                                                                                                                                                                                                |    |     |
| Q 11 | Write the working equation of a <b>PID</b> controller. What is the primary role of <b>Integral</b> controller? Why is it better to use a PI controller instead of a standalone P controller?                                                                                                                                                                                                                                                                  | 10 | CO4 |
|      | SECTION C [Scan and upload] 20 Marks                                                                                                                                                                                                                                                                                                                                                                                                                          |    |     |
| Q 12 | Consider a system having transfer function as:<br>$G(s) = \frac{(s+3)}{s(s+1)(s+2)}$ Sketch a <b>bode plot</b> for the above system and determine:<br>a) Gain cross over frequency<br>b) Phase cross over frequency<br>c) Gain margin<br>d) Phase margin<br>$\frac{OR}{s(s+1)(s+3)(s+4)}$ Consider a system having transfer function as:<br>$F(s) = \frac{k}{s(s+1)(s+3)(s+4)}$ Sketch a <b>root locus</b> for the above system and comment on the stability. | 20 | CO3 |