Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2020

Programme Name: B. Tech (ECE) Semester : V

Course Name : Microwave theory & Techniques : 03 hrs

Course Code : ECEG 3034 Max. Marks : 100

Nos. of page(s): 02

Instructions: All Questions are Compulsory.

SECTION A	(6x5=30)
-----------	----------

S. No.		Mark s	со
Q 1	An X-band Pulsed cylindrical magnetron has the following parameters: Anode voltage (V0) =32 KV Anode Current (I0)=84 amp Magnetic flux density B0=0.01 Wb/sq.m Radius of cathode cylinder (a)=6 cm Radius of anode (b)=12 cm.	5	CO3
	Compute: Cyclotron angular frequency Cutoff Voltage for fixed B0. Cutoff Magnetic flux density for fixed V0.		
Q 2	Twocavity klystron amplifier has the following parameters: Beam Voltage (V ₀)=20 KV Beam Current (I ₀)=1.5 amp Operating Frequency =2 GHz; input & output beam Coupling Co-eff =1 Signal voltage (V ₁)=2V (rms) Dc electron charge density =10 ⁻⁶ c/m ³ Cavity shunt resistance (R _{sh}) =2 K Ω Total Shunt resistance including load(R _{shl}) =1 K Ω ., Reduction factor (R) =0.4 Determine plasma frequency, induced voltage in the output cavity, power delivered to the load, electronic efficiency.	5	CO3

Q 3	Using double minima method it is observed that the variations in 3 dB points is 0.001. Distance between the two consecutive minima locations is d1 =4.6 cm and d2 =8.95cm from the load. Find SWR, reflection coeff and find the load impedance if characteristic impedance of the line is 75 ohms.	5	CO5
Q 4	TE ₂₁ mode is propagating through a rectangular waveguide having the diameter of 3cm and 1 cm as 'a & b' respectively Guide is filled with air dielectric. Find fc, λg and Zg in the guide for an operating frequency of 4 GHz.	5	CO1
Q5.	Given g1=g5=0.618; g2=g4=1.618, g3 =2.0, cutoff frequency =3 GHz, signal freq =4 GHz, Δ =10%. Design BSF using lumped elements	5	CO2
Q6.	Explain the working of network analyzer	5	CO5
	SECTION B (5x10=50)		
Q 7	Derive the attenuation factor for TM modes in rectangular waveguide.	10	CO1
Q 8	Explain Two valley model. What are the various modes of Oscillations of GUNN diode	10	CO4
Q 9	Derive the Hartree voltage in case of linear magnetron.	10	CO3
Q 10	Explain the working of BLC, Hybrid ring, power divider, Magic TEE.	10	CO2
Q11	Derive the field expressions for TE mnl modes of rectangular cavity.	10	CO1
	$SECTION-C \qquad (1x20=20)$		•
Q12.	GaAs FET has the following Scattering and Noise parameters at 8 GHz.(Z_0 =50 ohms), S_{11} =0.7(-110 deg), S_{12} =0.02(60 deg), S_{21} =3.5(60 deg) and S_{22} =0.8 (-70 deg). Fmin=2.5 dB, Optimum reflection coeff (Γ opt=0.7(120 deg)). Design Low noise Amplifier with minimum noise figure, maximum possible gain with matching circuits using shunt stubs.	20	CO2