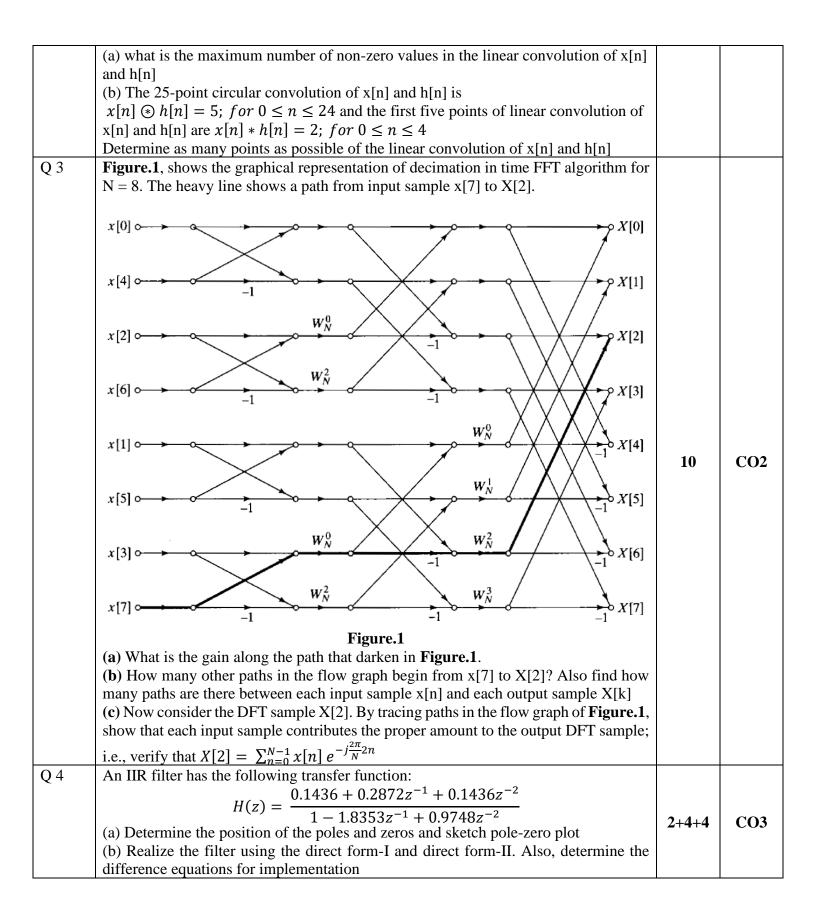
Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2020

Course: Digital Signal Processing (ECEG2013) Program: B Tech ECE Time: 03 hrs. No. of page/s: 3 Semester: V


Max. Marks: 100

Instructions:

- The question paper contains three sections namely Section-A, Section-B and Section-C.
- Attempt all questions. The number of marks for each question is mentioned on the right side of it.
- Assume any data if required and indicate the same clearly. Unless otherwise indicated symbols and notations have their usual meanings.

SECTION A (30 Marks)

	-			
S. No.		Marks	СО	
Q 1	Define the following properties of the discrete time system: Linearity and non- linearity; causality and non-causality; time invariant and time invariant; stability and 5 un-stability		CO1	
Q 2	What is FFT? Calculate the percentage saving in calculations in a computation of 256-point DFT using direct computation and that using FFT?5			
Q 3	Define the following terms: Phase delay, Group delay, linear phase response. Also mention how phase distortion and delay distortion are introduced?	5	CO3	
Q 4	Write the steps involved in the following digital filter design:(a) IIR filter design; (b) FIR filter design.	5	CO4	
Q 5	Define cross-correlation and auto-correlation sequence. Also write relation between linear convolution and correlation.	5	C01	
Q 6	What are the possible types of impulse response for linear phase FIR filters? Briefly describes the characteristics of each type.		CO3	
	SECTION B (50 Marks)			
Q 1	 Consider a system with input x[n] and output y[n] that satisfy the difference equation y[n] = ny[n-1] + x[n]. The system is causal and satisfies zero initial conditions. (a) If x[n] = δ[n], determine y[n] for all n (b) Is the system linear? Justify your answer. (c) Is the system time invariant? Justify your answer. 	10	CO1	
Q 2	Consider two finite-length sequences $x[n]$ and $h[n]$ for which $x[n] = 0$; for $n \le 0$ and $n \ge 24$ and $h[n] = 0$; for $n \le 0$ and $n \ge 9$	10	CO2	

	(a) Compute the first 4 comple	s (n = 0,1,2,3) of the filter output signal y[n] if $x[n] =$				
	$\delta[n] - \delta[n-1]$. Assume zero					
0.5	(a) Given a fourth-order filter t					
Q 5						
	$H(z) = \frac{(1.02132 + 1.02132)}{(1.02132 + 1.02132)}$		CO3			
	$(z^2 + 0.56)$	$\frac{0.5108}{554z + 0.4776} (0.4371z^2 + 0.8742z + 0.4371)}{(z^2 - 0.1316z + 0.1733)}$				
	using the direct form II	he cascade (series) form via second order sections	5+5			
	(b) Digitize the analog filter wi	th transfer function $H(s) = \frac{s+1}{s(s+2)}$ using the impulse				
	invariant method, Assume the					
	Invariant method, Assume the	SECTION-C (20 Marks)				
		SECTION-C (20 Marks)				
Q 1	A digitally recorded speech in t	he noisy environment can be enhanced using a lowpass				
	filter if the recorded speech v	vith a sampling rate of 8000Hz contains information				
	within 1600Hz. Design a low	pass filter using window method to remove the high-				
	frequency noise above 1600Hz					
	passband frequency range: 0–1					
	passband ripple: 0.02 dB;					
	stopband frequency range: 1800–4000Hz; and					
	stopband attenuation: 50dB.					
	Also realize with suitable struc					
	Or			CO4		
	A bandpass digital IIR filter with Butterworth response is required to remove baseline			0.04		
	wander and artefacts due to body movement in a certain biomedical application. The					
	filter requires to meet the following requirements:					
	Passband:	20 - 50 Hz				
	Stopband:	0 - 5 Hz and 70 -128 Hz				
	Passband ripple:	3 dB				
	1	20 dB				
	Sampling frequency:	256 Hz				
		nction for the filter using the bilinear transformation				
	method. Also realize with suita	ble structure.				