| Name: <br> Enrolment No: |  |  |  |
| :---: | :---: | :---: | :---: |
| Cours <br> Progra <br> Cours <br> Instru | UNIVERSITY OF PETROLEUM AND ENERGY STUDIES  <br> Online End Semester Examination, Dec 2020  <br> Hydraulic Engineering Semes <br> : B Tech Civil Engineering Time: <br> Code: CIVL 3019 Max. <br>   <br> ons: Attempt all the questions  | er: V <br> 03 Hour <br> Marks: |  |
| SECTION A ( $6 \times 5=30$ marks) <br> 1. Each Question carries 5 marks <br> 2. Instruction: Complete the statement/Select the correct answer(s) <br> 3. Also explain your answer in 1-2 line(s) |  |  |  |
| S. No. |  | Marks | CO |
| Q1 | Consider an incompressible laminar boundary layer flow over a flat plate of length L, aligned with the direction of an oncoming uniform free stream. If F the ratio of the drag force on the front half of the plate to the drag force on the rear half, then <br> a) $\mathrm{F}<2$ <br> b) $\mathrm{F}=0.5$ <br> c) $\mathrm{F}=1$ <br> d) $\mathrm{F}>2$ | 5 | CO 2 |
| Q2 | A fully developed laminar viscous flow through a circular tube has the ratio of maximum velocity to average velocity as: <br> (a) 3.0 <br> (b) 2.5 <br> (c) 2.0 <br> d) 1.5 | 5 | CO1 |
| Q3 | In a steady flow of an oil in the fully developed laminar regime, the shear stress is: <br> a) Constant across the pipe <br> b) Maximum at the centre and decreases parabolically towards the pipe wall boundary <br> c) Zero at the boundary and increases linearly towards the centre. <br> d) Zero at the centre and increases towards the pipe wall. | 5 | CO1 |
| Q4 | Flow separation is caused by: <br> (a) Reduction of pressure to local vapour pressure <br> (b) A negative pressure gradient <br> (c) A positive pressure gradient <br> (d) Thinning of boundary layer thickness to zero. | 5 | CO2 |
| Q5 | The pressure drop in a 100 mm diameter horizontal pipe is 50 kPa over a length of 10 m . The shear stress at the pipe wall is: <br> (a) 0.25 kPa <br> (b) 0.125 kPa <br> (c) 0.50 kPa <br> (d) 25.0 kPa | 5 | CO2 |
| Q6 | Velocity of air passing through a rectangular duct and a circular duct is same. Which one of the following is the correct expression for the equivalent diameter of the circular duct in respect of a rectangular duct for the same pressure loss per unit length? (a and b are the length and breadth of the rectangular duct cross-section) | 5 | CO3 |

## SECTION B (10 x 5 = 50 marks)

| SECTION B (10 x 5 = 50 marks) |  |  |  |
| :---: | :---: | :---: | :---: |
| 1. Each Question carries $\mathbf{1 0}$ marks <br> 2. Instruction: Write Short/brief notes |  |  |  |
| Q7 | A pipeline connecting two reservoirs has its diameter reduced by $20 \%$ due to deposition of chemicals. For a given head difference in the reservoirs with unaltered friction factor, this would cause a reduction in discharge of how much? | 10 | CO1 |
| Q8 | A rough plastic pipe of 0.5 m diameter and 0.3 Km length carrying water with a velocity of $300 \mathrm{~cm} / \mathrm{s}$, has an absolute roughness of 0.25 mm and a kinematic viscosity of 0.9 centistokes. <br> a) Is the Flow laminar or turbulent? <br> b) What is the head loss in friction? | 5+5 | CO1 |
| Q9 | Explain the phenomenon of separation of boundary layer. For the following profile sate whether the flow is separated or not. $u / U=-20(y / \delta)^{0.5}+(y / \delta)^{2}$ | 5+5 | CO2 |
| Q10 | A kite weighing 12.26 N has an effective area of $0.9 \mathrm{~m}^{2}$. The tension in the kite string is 32.37 N when the string makes an angle of $45^{\circ}$ with the horizontal. For a wind of 32 $\mathrm{km} / \mathrm{h}$, what are the coefficients of lift and drag if the kite assumes an angle of $8^{\circ}$ with the horizontal? Take specific weight of air as $11.80 \mathrm{~kg} / \mathrm{m}^{3}$. | 10 | CO 2 |
| Q11 | Determine the normal depth, bed width and sides slopes of a most efficient trapezoidal channel section to carry a discharge of $25 \mathrm{~m} 3 / \mathrm{s}$. The longitudinal slope of the channel is to be 0.0009 and Manning's n can be taken as 0.015 . | 10 | $\mathrm{CO3}$ |
| $\text { SECTION-C }(20 \times 1=20$ <br> 1. Each Question carries 20 marks <br> 2. Instruction: Write long answer. |  |  |  |
| Q12 | A discharge of $16.0 \mathrm{~m}^{3} / \mathrm{s}$ flows with a depth of 2.0 m in a 4.0 m wide rectangular channel. At a downstream section the width is reduced to 3.5 m and the channel bed is raised by $\Delta \mathrm{Z}$. Analyse the water-surface elevation in the transitions when (a) $\Delta \mathrm{Z}=$ 0.02 m , and (b) $\Delta \mathrm{Z}=0.35 \mathrm{~m}$. | 10+10 | $\mathrm{CO3}$ |
| OR |  |  |  |
| Q12 | A river 100 m wide and 3.0 m deep has an average bed slope of 0.0005 . Estimate the length of GVF profile produced by a low dam which raises the water surface just upstream if it by 1.50 m . Assume $\mathrm{n}=0.035$. Use direct step method and show atleast 5 steps | 20 | $\mathrm{CO3}$ |

