Name:			UNIVERSITY WITH A PURPOSE					
Enrolment No:								
Progr Cours	se: Chemical R ram: B.Tech (CH se Code: CHCE. actions: In case o	En eaction Engine E+RP) 3004	nd Semeste eering I	CTROLEUM A r Examination ssary assumpt	, December 202		00	
S.		SECTION A	(6X10=60)	(Attempt all qu	uestions)		Marks	со
<u>No.</u> Q 1	Discuss in detail about product distribution for parallel reaction.						10 M	CO1
Q 2	State the difference between temperature dependency from Collision theory and that from Transition-state theory.						10 M	CO1
Q 3	At certain temp							
	$t_{1/2} = 420 \text{ s}, C_A$ $t_{1/2} = 275 \text{ s}, C_{Ac}$ find the rate con	$_{\rm o} = 0.64 \; {\rm mol/l}$	ion.				10 M	CO2
Q 4	 (a) Define (i) Space time (ii) Space Velocity (iii) Holding time (iv) Half Life. (b) Discuss the theory of maximization of rectangles for finding optimum sizes of two mixed reactors in series. 						(5+5) M	CO3
Q 5	It is required to produce 9.5 kg/s of ethylene by cracking a feed stream of pure etane in a plug flow reactor operated at 1100 K and 6 atm. The cracking reaction is first order with K = $3.07 / s$.s. at 1100 K. $C_2H_6 \longrightarrow C_2H_4 + H_2$ Find the volume of reactor to achieve 80 % conversion of ethane.							CO4
Q 6	Explain Plug Flow Reactors in Series and in Parallel with equation.						10 M	CO5
				TION B (2X20	,			
Q 7		composition of is A \longrightarrow	A is carried $R + S$. the	nitial concentra	d reactor. The satisfies $A = (C_{Ao})^{-1}$	stoichiometry of the) is 0.003 mol/l. the	20 M	CO2

	Find a rate equation for this decomposition.		
Q 8	Reactant A in the liquid phase reacts to produce R and S by the following reactions in parallel. $A \xrightarrow{R} S$		
	Both these reactions are first order. A feed with $C_{Ao} = 1$, $C_{Ro} = 0$ and $C_{So} = 0$ enters in two mixed flow reactors in series ($C_1 = 2$ min; $C_2 = 5$ min). the composition within the first reactor is $C_{A1} = 0.40$, $C_{R1} = 0.40$ and $C_{S1} = 0.2$. find the composition of exit stream from the second reactor.	20 M	CO4
	OR		
	Explain Recycle Ratio with its range. Derive the performance equation for recycle reactor with varying density system.		