N	am	Λ
ΤA	am	C

Enrolment No:

Course Code

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Sem Examination, December 2020

Programme Name: B. Tech. CERP

: CHCE 3002

Semester Semester

Course Name : Numerical Methods in Chemical Engineering

Max. Marks: 100

Time

: V

: 03 hrs

Section A

- 1. Each Question will carry 5 Marks
- 2. Questions have sub questions
- 3. All are **multiple choice questions** (only correct choice with question number has to be written)

QA.1	1.2													
		Α		В		λ			Α		В			
	4	2	1	2			-	4	2	1	2			
	2	4	1 4	4 2	-	-0.5 -0.25		0	3 1.5	a ₂₃ 3.75	3 1.5	(a) 0.75	(5	~ ~ .
											1.5	(b) 0.5	Marks)	CO1
	The above	ve oper	ation re	epresent	s first st	tep of Ga	auss E	Elimina	ition Me	ethod.		(c) 1.0		
	What is t	the valu	e of a ₂₃	3 in the	updated	A matrix	on ri	ight ha	nd side)		(d) 1.5		
												(u) 1.3		
QA.2	for a functi	on								(a)	0.5, 1.0	0, 0.75		
	f(x) = 2	$2x^2 + 5$	x - 5							(b)	0.0, 0.5	5, 0.25		
	the bisection	on metho	d is as fo	ollows:								75, 0.625		
	i	XL	Χ _U	x _M	FL	F _U	F _M	$F_L F_M$	F_UF_M				(5	
	0	0	1	0.5	-5	2	-2	10	-4				Marks)	CO2
	1	x _L ⁽¹⁾	x _U ⁽¹⁾	X _M ⁽¹⁾										
	The values	s of												
	$x_L^{(1)} \ x_U^{(1)} \ a$	and $x_M^{(1)}$												

A.3

7	The nume	erical diff	erentiation at	x = 0.02 using		
	i	Xi	Уi	central difference formula is		
	0	0	3.1	(a) 10 (b) 20		
	1	0.01	3.2	(b) 20	(5	CO3
	2	0.02	3.5	(c) 30	Marks)	
	3	0.03	3.7	(d) 15		
	4	0.04	3.8			

QA. 4									
QA. 4	following is	s the solution o	of						
	$\frac{dy}{dx} = -0$.1y							
	at x = 0	y = 100							
	using Ada	ms Bashforth 1	lst order Me	thod					
	What will b	oe the value of	y ₆ ?						
								(5	CO4
								Marks)	
	t0	0	i	ti	yi_AB1	fi_AB1	(a) 97.1		
	y0	100	0	0	100	-10	(b) 96.1		
			1	0.01	99.9	-59.9			
	h	0.01	2	0.02	99.3	-59.6	(c) 96.7		
			3	0.03	98.7	-59.2	(d) 95.9		
			4	0.04	98.1	-58.9	(-)		
			6	0.05	97.5 y ₆ = ?	-58.5			
0.4.7				3.00	70 .		-		
QA. 5									
	$\frac{dy}{dx} = -1$	0y							
							(a) x; /0 9		
	at x = 0	y = 100					(a) $y_i/0.8$		
	If you have	e to solve follov	ving equation	n by Adan	n Multons	Method 1s	t (b) $y_i/0.9$	(5	
	_	nod with $h = 0.0$		_				(5 Marks)	CO4
			-				(c) $y_i/1.1$	l l l l l l l l l l l l l l l l l l l	
	t0	0	i	ti	y _i (AM1)		(d) v./1 2		
	y0	100	0	0	100		(d) $y_i/1.2$		
			1	0.01	y1 = ?				
	h	0.01							
QA. 6	(Select all	the correct an	swers)						
	12	_							
		$\frac{y}{x} + 2y^2 = 0$							
	at x = 0	$\frac{dy}{dx} = 2(y -$	1)						
	at x = 1	$\frac{dy}{dx} = 0$							
	Suppose y	ou divide the x	space in 4 e	qual parts	h = 0.25			(5	COF
	then the hi	ypothetical pion	ts ar a and a	r in terms	of interme	diate noint	· s	Marks)	CO5
	are	ypotrieticai piori	is y_{-1} and y	5 111 (61111)	o or interme	ulate politi	3		
	aro								
	(a) $y_{-1} = y_1$	$-y_0 - 1$							
	(b) $y_{-1} = y_1$	~							
	(c) $y_5 = y_3$	J •							
	(d) $y_5 = y_4$								
	(-, 5 - 54								
	1								

	Section B		
	Question will carry 10 Marks		
	e file upload type		
S. No.		Marks	CO
Q B.1	Calculate all the x values for first iteration of the different iterative methods. Consider omega = 1.5 for SOR Method $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	CO1 CO6
Q B.2	Solve a non-linear equation given by $f(x)=4x^2-4x+0.5$ take the initial guess for $x=0$ Use successive Substitution and Newton Raphson method to solve it on pen and paper. Solve for only two steps	10	CO2
Q B.3	The dimensionless temperature of a fluid under steady state fully developed laminar flow in a cylindrical pipe, with walls heated electrically, is given by $\theta = -K - r^2 + \frac{r^4}{4}$ Consider the constant K in the above expression as the last significant number in your roll number. r is the dimentionless radius. The cup-mixing dimentionless is given by $\theta_b = 4 \int_0^1 \theta \big(1-r^2\big) r dr$ estimate θ_b numerically using Simpson's h/3 rule with $r=0,0.25,0.5,0.75,1.0$. NOTE: If MS-Excel is not allowed explain the procedure.	10	CO3 CO6

Q B.4	In a batch reactor, the reactants are fed to a closed system at time $t=0$ and undergo a reaction. If we have a single reactant, say species A, that is consumed by the reaction in a constant volume system, then the mass balance on this species is $\frac{dC_A}{dt} = -r(C_A)$ where $r(C_A)$ is the rate of consumption of species A per unit volume and C_A is the concentration of species A. consider the initial concentration is $C_A(t=0) = C_0 = 1 \text{ mol/m}^3$ To just explain how you will proceed with RK4 method. If MS-Excel is allowed then Determine the concentration profile for a batch reactor with the consumption rate $r = kC_A^2$ using RK4 method from $t=0$ to 1 with step size 0.1. Compare it with the true solution given by $C_A(t) = C_0/(1+C_0kt)$ Consider k as the last significant digit in your roll number. If MS-Excel is not allowed then Explain the steps of RK4 method to determine the concentration profile for a batch reactor with the consumption rate $r = kC_A^2$	10	CO4 CO6
Q B.5	Consider a stirred tank vessel which initially contains M kg of Solvent at 25^{0} C. m kg/min of solvent flows into the stirred vessel at 25^{0} C and exits out also at the same rate. At t = 0 the flow of steam is started in a coil in the stirred vessel. The heat supplied by steam to the solvent is given by $Q = UA(T_S - T)$, where UA is the overall heat transfer coefficient multiplied by coil area through which heat exchange takes place at T_S . The temperature profile of the solvent is given by $\frac{dT}{dt} = (K_1) - (K2)T$ The initial condition $at\ t = 0$; $T = 25^{0}C$ IF MS Excel is allowed Consider K_1 as 0.0 XX with XX are the last two non zero digits of your roll number Consider K_2 as 0.000 XXX with XXXX as the last three non zero digits of your SAP ID Solve it for 10 steps with step size t = 100 s using Adam Moulton - 2nd order method. IF MS-Excel is not allowed then explain procedure of Adam Moulton - 2nd order method. method to solve it	10	CO4 CO6

	Section C					
File uplo	pad type					
QC	The chemical reaction and diffusion in a spherical catalyst pallet is given by					
	$D rac{d^2 C_A}{dr^2} + rac{2}{r} D rac{dC_A}{dr} - kC_A = rac{dC_A}{dt}$					
	where D is the effective diffusivity of component A within the catalyst pallet. The pallet is isothermal. The concentration at the surface of the spherical catalyst pellet is 1 mol/m2, (relatively insignificant mass transfer resistance) thus the boundary conditions are	20	CO5			
	at $r=R\ C_A=1$					
	at $r=0$ $dC_A/dr=0$					
	Use method of lines to convert it into system of ODEs					
	Hint: I'hospital's rule will be used for 0/0 term.					