Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

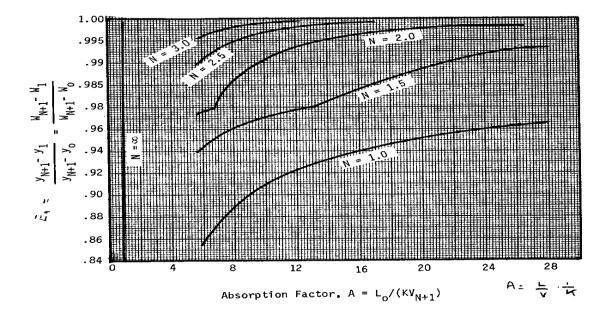
End Semester Examination Dec 2020

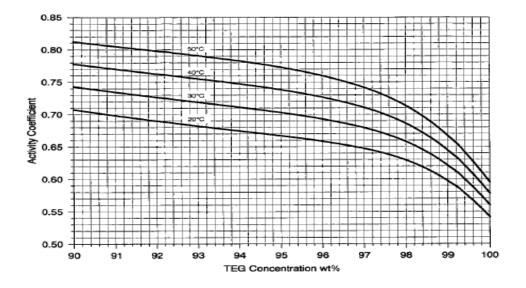
Programme Name: B. Tech APE (Gas)

Semester: V

Course Name : Natural Gas Processing

Course Code : CHGS 3022 Max. Marks: 100


Nos. of page(s) :2


Instructions:

SECTION A (5x6=30)

S. No.	Short Notes	Marks	СО
1	What are selection parameters for sweetening process?	5	CO3
2	Why natural gas is an important feedstock?	5	CO5
3	List different methods of NGL recovery	5	CO4
4	What are materials used for adsorption dehydration?	5	CO2
5	Suggest guidelines for selection of NGL recovery methods	5	CO4
6	What is difference in physical and chemical absorption? List chemical and physical absorption methods used in sweetening processes?	5	CO3
	SECTION B (10x5=50)	l	<u> </u>
7	Draw natural gas processing schematic	10	CO1
8	What are typical impurities in natural gas? Why it is important to remove these impurities?	10	CO1
9	Explain methane steam reforming process	10	CO5
10	Describe operating problems in sweetening process	10	CO3
11	Describe NGL fractionation method with flow diagram	10	CO4

SECTION-C (20x1=20)					
12	Calculate the circulation rate 98.0% of lean TEG to dry 10^6 std m^3 / day of gas at 7.0 MPa and $40 \circ C$ in six tray absorber (1.5 Theoretical tray) to achieve an exit gas at 90 kg/ 10^6 std m^3 / day. Inlet water content is 1100 kg/ 10^6 std m^3 / day(Given V=1739 Kmol/hr., B= 1.33 * 10^{-6} , Density of glycol=1.12 kg/ m^3).	20	CO2		
	\mathbf{Or}				
	Explain glycol dehydration equipment design in detail.				

