Name:

Enrolment No:

UNIVERSITY WITH A PURPOSE

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2020

Course: Material Science Program: B. Tech Mechatronics **Course Code: MEMA 2001**

Semester: III Time 03 hrs. Max. Marks: 100

Instructions:

SECTION A: 5 marks each

S. No.		Marks	CO
Q 1	 Write true or false: (i) Tempered martensite has better ductility than martensite. (ii) When steel with exactly 0.8% carbon by weight is cooled, the FCC structure of the mixture tries to revert back to its BCC structure. (iii)Monel is alloy of Nickel. (iv)Talc is not a ceramic. (v) Aluminium has fcc crystal structure. 	5	CO1
Q 2	Microstructure of nodular cast iron consists of mixture of and while gray cast iron is composed of and Carbon range in cast irons is	5	CO1
Q 3	 (a) Amount of carbon in low carbon, medium carbon and high carbon steels respectively is, and (b) Carbon steels have amount of alloying elements (low/high). (c) Stainless steels have as an important alloying element for corrosion protection. 	5	C01
Q 4	Creep failure is	5	CO2
Q 5	Important properties of abrasives that are required are and Abrasives can be used in, and forms.	5	CO1
Q 6	 (i) For single component system when degree of freedom is '1' then number of phases are: (a) 0 (b)1 (c) 2 (d) 3 (ii) At what temperature Fe turns paramagnetic while heating (a) 727 °C (b) 623 °C (c) 1146 °C (d) 1500 °C (iii) Phenomenon involved in phase transformation: (a) Nucleation (b) Growth (c) both a and b (d) none of these (iv) is not a non-ferrous metal. (a) Aluminium (b) Zinc (c) Lead (d) Iron (v) is alloyed with silver to make sterling silver. (a) Iron (b) Copper (c) Tin (d) Magnesium 	5	CO1

SECTION B: 10 marks each		
Q 7 Sketch neat and labelled crystal structure of Martensite and describe the process structural evolution during rapid cooling.	ss of 10	CO5
Q 8 Sketch completely labelled stress vs strain curve for ductile and brittle materia name the testing technique used to obtain these curves.	ls and 10	CO2
Q 9 Define fatigue failure. Neatly sketch the various fatigue loading cycles.	10	CO2
Q 10 Sketch and explain the microstructure evolution of eutectoid steel at 727 °C.	10	CO5
Q 11 A. Analyze the figure and answer the following questions: (i) Write the solubility of carbon in ferrite at 727 °C. (ii) At what temperature solubility in austenite phase is maximum. Wrisolubility amount. (iii) Write the name of eutectoid product. (iv) Write eutectoid, eutectic and peritectic temperatures. (v) Write all the invariant reactions in this diagram. $1539 \frac{1}{1400} \frac{1}{9} \frac{1}{146} \frac{1}{14} \frac{1}{146} \frac{1}{14} \frac{1}{146} \frac{1}{14} \frac{1}{146} \frac{1}{14} \frac{1}$		C03
 Q 12 A. (i) Sketch neat and completely labelled TTT curve. (ii)Discuss the effect of cooling rate on grain size using example of various microstructures formed during heat treatments. (iii)Using Hall-Petch equation, discuss the effect of grain size on strength. 	6 8 6	CO4
OR		

В.	12	
(i) Describe annealing, normalizing and quenching processes.	6	
(ii) Discuss Cyaniding and nitriding processes.	2	
(iii) Under what necessary cooling conditions, martensite forms.		