Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIESEnd Semester Examination, December 2020Course: Engineering Thermodynamics (MECH 2014)Program: B. Tech MechatronicsTime: 3 Hours		Semest Max. Maı	
SECTION A Note: For Q-1 to Q-6, Type the final answer only. Write precisely and to the point.			
S. No.		Marks	CO
Q-1	Explain what you understand by thermodynamics equilibrium. Explain Mechanical, Chemical and Thermal equilibrium.	5	CO1
Q-2	Why does free expansion have zero work transfer?	5	CO1
Q-3	What do you understand by dissipative effect? When is the work said to be dissipated?	5	CO1
Q-4	What do you understand by the entropy principle? When the system is at equilibrium why would any conceivable change in entropy be zero?	5	CO1
Q-5	Classify internal combustion engine. What is air standard efficiency?	5	CO1
Q-6	What is PMM1, PMM2, and PMM3? What guidelines does it prescribe for energy conversion?	5	CO1
SECTION B			
Q-7	A nozzle is a device for increasing the velocity of a steadily flowing stream. At the inlet to a certain nozzle, the enthalpy of the fluid passing is $3000 \mathrm{~kJ} / \mathrm{kg}$ and the velocity is $60 \mathrm{~m} / \mathrm{s}$. At the discharge end, the enthalpy is $2762 \mathrm{~kJ} / \mathrm{kg}$. The nozzle is horizontal and there is negligible heat loss from it. (a) Find the velocity at exists from the nozzle. (b) If the inlet area is 0.1 m 2 and the specific volume at inlet is $0.187 \mathrm{~m}^{3} / \mathrm{kg}$, find the mass flow rate. (c) If the specific volume at the nozzle exit is $0.498 \mathrm{~m}^{3} / \mathrm{kg}$, find the exit area of the nozzle.	10	CO2
Q-8	A household refrigerator is maintained at a temperature of $2^{\circ} \mathrm{C}$. Every time the door is opened, warm material is placed inside, introducing an average of 420 kJ , but making only a small change in the temperature of the refrigerator. The door is opened 20 times a day, and the refrigerator operates at 15% of the ideal COP. The cost of work is Rs.	10	CO 2

	2.50 per kWh. What is the monthly bill for this refrigerator? The atmosphere is at $30^{\circ} \mathrm{C}$.		
Q-9	A system maintained at constant volume is initially at temperature $T 1$, and a heat reservoir at the lower temperature T_{0} is available. Show that the maximum work recoverable as the system is cooled to T_{0} is $W=C_{V}\left[\left(T_{1}-T_{0}\right)-T_{0} \ln \frac{T_{1}}{T_{0}}\right]$	10	CO 2
Q-10	Evaluate the entropy change of the universe as a result of the following processes: (a) A copper block of 600 g mass and with $C p$ of $150 \mathrm{~J} / \mathrm{K}$ at $100^{\circ} \mathrm{C}$ is placed in a lake at $8^{\circ} \mathrm{C}$. (b) The same block, at $8^{\circ} \mathrm{C}$, is dropped from a height of 100 m into the lake. (c) Two such blocks, at 100 and $0^{\circ} \mathrm{C}$, are joined together.	10	CO 3
Q-11	What do you understand by Air standard cycle? Find the air standard efficiencies for Otto cycle with a compression ratio of 6 using ideal gases having specific heat ratios 1.3, 1.4, and 1.67. Plot the results for efficiency and heat ratios. OR A heat pump working on the Carnot cycle takes in heat from a reservoir at $5^{\circ} \mathrm{C}$ and delivers heat to a reservoir at $60^{\circ} \mathrm{C}$. The heat pump is driven by a reversible heat engine, which takes in heat from a reservoir at $840^{\circ} \mathrm{C}$ and rejects heat to a reservoir at $60^{\circ} \mathrm{C}$. The reversible heat engine also drives a machine that absorbs 30 kW . If the heat pump extracts $17 \mathrm{~kJ} / \mathrm{s}$ from the $5^{\circ} \mathrm{C}$ reservoir, determine (a) The rate of heat supply from the $840^{\circ} \mathrm{C}$ source; (b) The rate of heat rejection to the $60^{\circ} \mathrm{C}$ sink.	10	CO 2
SECTION C			
Q 12	A reversible engine, as shown in Figure during a cycle of operations draws 5 MJ from the 400 K reservoir and does 840 kJ of work. Find the amount and direction of heat interaction with other reservoirs. OR One kg of air initially at $0.7 \mathrm{MPa}, 20^{\circ} \mathrm{C}$ changes to $0.35 \mathrm{MPa}, 60^{\circ} \mathrm{C}$ by the three reversible non-flow processes, as shown in Figure. Process 1: $a-2$ consists of a constant pressure expansion followed by a constant volume cooling, process 1: $b-2$ an isothermal expansion followed by a constant pressure expansion, and process 1:c-2	20	CO 3

