

Name:				
Enrolment No:		UNIVERSITY WITH A PURPOSE		
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, December 2020 Course: Material Engineering Semester: III Program: B. Tech Time 03 hrs Course Code: MEMA2003 Max. Marks: 100 Instructions: In Q11 and 12, there is internal choice in the question.				
SECTION-A: Total 30 marks Each question carries 5 marks				
S. No.			CO	
Q 1	Classify following materials into their class of materials (metal/alloy, polymer, ceramic, composite): a) Superalloy, b) Teflon, c) Bronze, d) Alumina, e) Carbon fibre reinforced polymer a), b), c), d), e)		CO2	
Q 2	 materials. c) X-ray diffraction is used to identif d) Glasses are polycrystalline in nature 	er strength and are more ductile as compared to BCC by the crystal structure of a material.	CO1	
Q 3	 Select ALL the correct options related to potential energy curve: a) At equilibrium atomic spacing, overall potential energy is minimum. b) At equilibrium atomic spacing, attractive potential energy is minimum. c) The depth of potential energy well is a measure of cohesive energy. d) The first derivative of potential energy gives the interatomic force between atoms. e) At equilibrium atomic spacing, the interatomic force is zero. 		CO1	
Q 4	Write the miller indices of planes showed a a a a b)	in below cubic unit cells:	CO1	

Q 11	a) Draw a schematic T-T-T diagram for eutectoid plain carbon steel.			
	 Answer <u>any one of the following</u>: b) Based on nucleation and growth phase transformation, describe the nose formation in T-T-T diagram. c) Briefly describe the differences between annealing and normalizing heat treatment processes. 	CO3		
SECTION-C: Total 20 marks				
Q 12	a) Draw the Fe-C diagram showing eutectoid and eutectic phase transformations.	CO1		
	 Answer <u>any ONE of the following</u>: b) Show the microstructural evolution as a hypo-eutectoid steel is cooled from single phase austenite region to room temperature. c) Show the microstructural evolution as a hyper-eutectoid steel is cooled from single phase austenite region to room temperature. b) Show the microstructural evolution as a hyper-eutectoid steel is cooled from single phase austenite region to room temperature. 	CO5		
	d) Show the microstructural evolution as a eutectoid steel is cooled from single phase austenite region to room temperature			