Name:				
Enrolme	nt No:	UNIVERSITY WITH A PURPOSE		
	LINIVEDSITY OF DETI	ROLEUM AND ENERGY STUDIES		
		er Examination, December 2020		
Course:	Engineering Mechanics		ter: III	
Program	8		03 hrs.	
0	Code: MECH 1002	Max. N	Iarks: 10	0
Instruct	ions: a) All questions are compulsory.			
	b) Assume any suitable value for the m			
1 Fach O		SECTION A		
	uestion will carry 5 Marks and has three sub- are objective and true/false	questions		
S. No.			Mark	<u> </u>
21101			S	CO
Q 1	i) In the method of sections for the	e analysis of forces in the members of a pin-		
	jointed truss, (2 M)			
		any set of members for equal ease of analysis		
		that the number of unknowns is limited and		
	determined by employing the con	-		
		hat the section being cut is in equilibrium		
	(d) the sections to be cut are as sr	nall as possible	_	001
			5	CO1
	ii) The coefficient of friction depends	apon (2 M)		
	(a) the normal reaction			
	(b) the surface roughness(c) the tangential force applied			
	(d) the speed of movement			
	(a) the speed of movement			
	iii) Radius of curvature for a rectilinea	ar motion is zero (T/F) (1 M)		
Q2.		is not necessary in obtaining the equation for		
	parabolic trajectory of a particle: (2 M)		
	(a) Ain magistan ag is nagligible			
	(a) Air resistance is negligible(b) The gravitational acceleration	a is constant	5	CO1
	(c) The body can be represented b		5	
	(d) The body must not change its			
	(a)	0		
	ii) The D'Alembert principle (2M)		

	 (a) is a hypothetical principle (b) provides no special advantage over Newton's law (c) is based upon the existence of inertia forces (d) allows a dynamical problem to be treated similar to a statical problem iii) Number of possible equilibrium equation for an isolated particle present in 2 D plane is 3 (T/F) (1 M) 		
Q3	 i) Mass moment of inertia of any rigid body about its centroidal axis is (2 M) a) Maximum b) Minimum c) Depend on the shape of the body d) zero i) The velocity of a body on reaching the ground from a height h, is (2 M) a) 2√gh b) √2gh c) √gh d) 2g√h ii) Centripetal acceleration acts away from the center of rotation (T/F) (1 M) 	5	CO1
Q4.	 i) Moment of inertia of a triangular section of base (b) and height (h) about an axis through its base, is (2 M) a) bh³/3 b) bh³/12 c) bh³/8 d) bh³/36 ii) For perfect inelastic collision coefficient of restitution is. (2 M) a) 0 b) 1 c) Any value between 0 and 1 d) Any negative value 	5	CO1

	iii) Energy conservation equation valid in presence of friction (1 M)		
Q5	 i) Which of the following is a vector quantity (2 M) a) Linear acceleration b) Linear velocity c) Linear displacement d) All of the above 		
	 iii) The coefficient of friction depends on (2M) a) Area of contact b) Shape of surface c) Material of surface d) None of the above iv) A fixed support has maximum 2 unknowns (reactions) at the connection (T/F) 	5	CO1
Q6	 (1 M) i) A ladder is resting on a smooth ground and leaning against a rough vertical wall. The force of friction will act (2M) a) Towards the wall at its upper end b) Away from the wall at its upper end c) Downward at its upper end d) Upward at its upper end ii) The linear velocity of a body rotating at ω rad/s along a circular path of radius r is given by (2 M) a) ω²r b) ω²/r c) ωr d) ω/r iii) Moment of inertia increases with increase in the length of given cross-section 		CO1
 	geometry (T/F) (1 M) SECTION B		1
Q 7	Determine moment of inertia of the below cross section (T- section) about its centroidal axis	10	CO2

