Name:			JPE	S			
Enro	JFL						
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES							
End Semester Examination, December 2020							
Course: Chemical Eng I (Thermodynamics & Measuring A. Inst.) – HSFS2001 Semester: III							
	Programme: BTech (FSE) Time: 03 hrs. Max. Marks: 100						
Time: 03 hrs. Max. M							
Instructions:							
(i)	All Questions in Section A are compulsory. Se	ection B has 5 Ouestions with O11 l	naving an				
	internal choice. Section C has 1 questions with		9.0				
(ii)	Answer all the questions sequentially.						
	SECTION A (Ma	aximum marks 30)					
S.				COs			
No.			Marks	COS			
Q 1	The drinking water needs of an office are met by c						
	water fountain from 23 to 6°C at an average rate o	6					
	refrigerator is 3.1, the required power input to this	refrigerator is					
	(<i>a</i>) 197 W (<i>b</i>) 612 W		5	CO2			
	(c) 64 W		5	CO3			
	(<i>d</i>) 109 W						
	(e) 403 W						
	(Hint: Specific Heat capacity (Cp) of water is 4.18	8 KJ/Kg-C)					
Q2	The pressure of a fluid always decreases during ar		5	CO1			
	also the case for the temperature? Explain briefly.		3	COI			
Q3	True or False						
	(a) As per 1^{st} Law of Thermodynamics - there	is no restriction on direction of					
	conversion of energy. (b) Dip Stick and Float type level measuremer	nt devices give direct massurement					
	of level.	it devices give direct measurement					
	(c) In an adiabatic process heat flows from a	system to the surrounding.					
	(d) For an open system energy can travel through		5	CO1			
	the form of heat and work but mass is not						
	system.						
	(e) Joule Thomson coefficient is a measure of	the change in temperature with					
	pressure during a constant enthalpy proces	-					
Q4	Propane (C_3H_8) is burned with 150 percent theore	tical air. Calculate the air–fuel mass	5	CO2			
05	ratio for this combustion process.						
Q5	Is it possible to have a real heat engine with therm	-	5	CO3			
	Carnot heat engine operating between same tempe	frature source and sink? Explain.	5	COS			
Q6	(a) What is Offset in a controller?						
×°	(b) What is Offshoot in a controller?		0.0.1				
	(c) Which controller is best suited for a proces	ss with frequent startups and	2+2+1 -5	CO4			
	shutdowns?	-	=5				

	SECTION B (Maximum marks 50)		
Q7	Describe the working of any two instruments used for indirect level measurement.	10	CO1
Q8	Determine the theoretical density for Barium with following properties: crystal structure = BCC atomic weight = 137.33 g/mol (1 amu = 1 g/mol) atomic radius R = 0.217 nm (1 nm = 10^{-7} cm)		CO5
Q9	Explain the working of mass spectroscopy with the help of a diagram.	10	CO5
Q10	 (a) Define the coefficient of performance of a refrigerator in words. Can it be greater than unity? (b) A food department is kept at -12°C by a refrigerator in an environment at 30°C. The total heat gain to the food department is estimated to be 3300 kJ/h and the heat rejection in the condenser is 4800 kJ/h. Determine the power input to the compressor, in kW and the COP of the refrigerator. 		CO3
Q11			
	OR A rigid tank contains a hot fluid that is cooled while being stirred by a paddle wheel. Initially, the internal energy of the fluid is 800 kJ. During the cooling process, the fluid loses 500 kJ of heat, and the paddle wheel does 100 kJ of work on the fluid. Determine the final internal energy of the fluid. Neglect the energy stored in the paddle wheel. Clearly explain all the assumptions made in solving the problem.		C01
	SECTION-C (Maximum marks 20)		·
Q12	 i) What are polymers? Explain the molecular structure of polymers with the help of diagrams and comment on relative strength of various polymer structures. ii) How is molecular weight of a polymer calculated? iii) Calculate the molecular weight for a polymer with number and mass of monomer given as below: 		
	Number of monomer unitsMass of monomer units(Kg)150		
	$\frac{1}{3}$ $\frac{50}{20}$		
	4 80		
	2 20	20	COF
	1 80	20	CO5
	ORThe importance of temperature measurement and control cannot be understated. Many gadgets of day to day use as well as sophisticated equipment used in industry require monitoring and control of temperature.i)Which law of thermodynamics describes the absolute temperature scale?ii)What are the various temperature measurement techniques? Describe the working principle of each of the temperature measurement techniques.iii)Write advantage and disadvantage of various temperature measurement techniques.		