Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, Dec 2020

Course: Electrical Machines-I Program: B Tech Electrical Course Code: EPEG 2010 Semester: III Time : 03 hrs Max. Marks: 100

SECTION A

1. Each Question will carry 5 Marks

2. Instruction: Complete the statement / Select the correct answer(s)

	Question	CO
Q 1	Write down 4 applications of Transformers	CO 1
Q 2		CO 1
Q 3	The purpose of brushes employed in DC machines is	CO 1
Q 4	Write down the 2 types of armature reaction happened in DC Machines and its effect. Types:, Effect:,,	CO 2
Q 5	Write down the four methods by which flux is varied to control the speed of a DC series motor?	CO 2
Q 6	Define Faraday's law of Electro Magnetic Induction.	CO 1
	SECTION B	
	h auestion will carry 10 marks	
	h question will carry 10 marks ruction: Write short / brief notes	
2. Insti		CO 2
	 (a) Derive the EMF equation of a single phase transformer (b) A 200 KVA, 6600 V/400 V, 50 Hz single phase transformer has 80 turns on the secondary. Calculate (i) approximate values of the primary and secondary currents., 	CO 2 CO 3

	(b) The armature of a 6-pole, 600 rpm lap wound generator has 90 slots. If each coil	
0.10	has 4 turns, calculate the flux per pole required to generate an emf of 288 volts.	
Q 10	Explain the open circuit test and short circuit test with suitable diagram. Also explain what are the parameters going to find through these two tests.	CO 4
Q 11	Explain the following:	
C	(i) why are transformers needed in power systems	
	(ii) why is it necessary to provide tappings in the HV winding of a transformer	
	(iii) why the core of a transformer is laminated	CO 4
	(iv) why silicon is added to steel and used it for core of a transformer?	
	(v) why the efficiency of a transformer is high?	
1	Section C	
	1 Question carries 20 Marks.	
	ruction: Write long answer.	
	wer any one question	
Q 12	(a) Derive the condition for maximum efficiency in the case of DC Generators.	
	(b) a 4-pole dc shunt generator with a wave wound armature has to supply a load of	
	500 lamps each of 100 W at 250 V. allowing 10 V for the voltage drop in the	CO 2
	connecting loads between the generator and the load, and drop of 1V per brush.	CO 3
	Calculate the speed at which the generator should be driven. The flux per pole is 30	
	mwb and the armature and shunt field resistances are respectively 0.05 ohms and 65	
	ohms. The number of armature conductors is 390.	
	(OR)	
	(a) Draw and explain the equivalent circuit of single phase transformer referring to	
	primary and secondary	
	(b) a 4000 V/ 400 V, 10 KVA transformer has primary and secondary winding	
	resistance of 13 ohms and 0.15 ohms respectively. The leakage reactance referred to	
	the primary is 45 ohms, the magnetizing reactance referred to the primary is 6000	
	ohms, and the resistance corresponding to the core loss is 12000 ohms. Determine	CO 3
	(i) Total resistance referred to the primary and the values of all the impedances	
	referred to the secondary.	
	(ii) The input current when the secondary terminals are open circuited.	
	(iii) The input current when the secondary load current is 25 ohms at a power factor	
	of 0.8 lagging.	